1 Exercises: Fixed Point Numbers

1.1 Integral Numbers

There are two ways to interpret a bit vector as integral number: *unsigned* and *signed*, corresponding to the *IEEE* VHDL libraries *std_logic_unsigned* and *std_logic_signed*, resp.

1.2 Fixed Point Numerical Representation: The Q Number Format

Unsigned: UQg.f with g integral (deutsch: ganze) and f fractional bits. Width w=g+f. Signed: Qg.f with 1 sign bit plus g integral and f fraction bits. Width w=1+g+f.

Exercise: The bit string 110.1011 can be interpreted...

as UQ3.4 format representing					
••••	02 4 daliwa				
as Q2.4 derivering					
••••					
Unsig	gned:	Range:	Resolution: r =		
Singe	ed	Range:	Resolution: r		
	You can append an arbitrary number of after the point.				
	You can precede an arbitrary number of before an unsigned number.				

> You can precede an arbitrary multiple of before a signed number.

Summation an subtraction of fixed-point numbers is easy as they can be treated like integer numbers when they are written such that the points are over each other. Example:

Given numbers	Unsigned treatment	Signed treatment
11011011.11011	11011011.11011	11011011.11011
±101.11101101	±101.11101101	±101.11101101

1.3 Multiplication of Fixed-Point Numbers

We compute **prod** = coef * data with coef and data having w_c and w_d binary places, respectively, f_c and f_d of them fractional.

Then **prod** has binary places, of them fractional.

Reducing the length of products: $y = prod(i_{ph} : i_{pl})$

Let coef have w_c binary places, f_c of them fractional. Signal data has w_d binary places, f_d of them fractional. The product has

Fig. 2.3 illustrates the multiplication of the coefficient **coef** with $\mathbf{w}_c = \dots, \mathbf{f}_c = \dots$

and the data sample data with $w_d = \dots + p_d$, $f_d = \dots + p_d$. The product prod has

 $\mathbf{w}_{\mathbf{p}}$ = binary places,

We want to take result vector **y** out of **prod** preserving the point. For all bit vectors the LSB has index 0.

In Fig. 2.3 y has $w_y = \dots$, binary places $f_y = \dots$ of them fractional.

To apply the VHDL command y<=prod(iph DOWNTO ipl) we have to compute $i_{pl} = \dots$

1.4 Real → **Binary Conversion**

Exercises (for solutions see \rightarrow chapter 8) : Convert π =3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.

Convert $-\pi$ =-3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.

.....

2 Exercise Based on Executable VHDL

Listing 4: Code with gaps

```
LIBRARY ieee; USE ieee.std logic 1164.ALL;
(1)
   PACKAGE pk_filter IS
(2)
     CONSTANT cDataInWidth: POSITIVE:=4; -- Input-Data BitWidth
(3)
(4)
     CONSTANT cDataInFract:POSITIVE:=2; -- No of Input-Data fract. Bits
(5)
     CONSTANT cDataOutWidth:POSITIVE:=5; -- Output-Data BitWidth
(6)
     CONSTANT cDataOutFract:POSITIVE:=3; -- No of Output-Data fract Bits
     CONSTANT cCoefWidth:POSITIVE:=4; -- Coefficient's BitWidth
CONSTANT cCoefFract:POSITIVE:=2; -- No of Coef's fractional Bits
(7)
(8)
     SUBTYPE t_DataIn IS std_logic_vector(cDataInWidth-1 DOWNTO 0);
SUBTYPE t_DataOut IS std_logic_vector(cDataOutWidth-1 DOWNTO 0);
SUBTYPE t_coef IS std_logic_vector(cCoefWidth-1 DOWNTO 0);
(9)
(10)
(11)
(12) END PACKAGE pk_filter;
(13)
(14) LIBRARY ieee; USE ieee.std_logic_1164.ALL,
(15)
                  ieee.std logic signed."+", ieee.std logic signed."*";
(16) USE WORK.pk_filter.ALL;
(17) ENTITY TestBitslice IS
(18) END ENTITY TestBitslice;
(19)
(20) ARCHITECTURE rtl_TestBitslice OF TestBitslice IS
(21)
     SIGNAL DataIn :t DataIn;
(22)
     SIGNAL coef :t_coef;
(23)
     SIGNAL DataOut:t_DataOut;
    SIGNAL product:std_logic_vector(.....
(24)
    (25)
     CONSTANT iPl:NATURAL:=
    (26)
     CONSTANT iPh:NATURAL:= .....
    (27) BEGIN
(28) DataIn <= "0101", "0100" AFTER 10 ns; -- 1.25,
                                                 1.00 AFTER 10 ns
    coef <= "0101";
(29)
                                        -- 1.25
(30)
    product <= coef * DataIn;
                                       -- 1.5625, 1.25 AFTER 10 ns
(31)
     DataOut <= product(iPh DOWNTO iP1) .....
                               (32) END ARCHITECTURE rtl TestBitslice;
```

Correspondences with chapter 2.3: fc=cCoefFract, fd=cDataInFract, fy=cDataOutFract, wc, wd, wp, wy: cCoefWidth, cDataInWidth, cProdWidth, cDataOutWidth, respectively.

Exercises:

- Complete line (24) to get a *product* signal that fits to the multiplication of line (30).
- Compute *iPl* und *iPh* in lines (25), (26) to fit the bit-slice operation of line (31).
- Extend line (31) to get the bit-slice by bit-vector easy rounding.
- ▶ Verify the product, bit-slice and rounding operation of lines (39), (49) by hand.