1 Exercises: Fixed Point Numbers
1.1 Integral Numbers

There are two ways to interpret a bit vector as integral number: unsigned and signed,
corresponding to the IEEE VHDL libraries std_logic_unsigned and std_logic_signed, resp.

Unsigned interpretation: A bit vector of w bits represents the integer range

Signed interpretation: A bit vector of w bits represents the int. range

1.2 Fixed Point Numerical Representation: The Q Number Format

Unsigned: UQg.f with g integral (deutsch: ganze) and f fractional bits. Width w=g+f.
Signed: Qg.f with 1 sign bit plus g integral and f fraction bits. Width w=1+g+f.

Exercise: The bit string 110.1011 can be interpreted...

... as UQ3.4 format representing

... as Q2.4 delivering

Unsigned: Range: Resolution: r =

Singed Range: Resolution: r

» You can append an arbitrary number of after the point.

>

» You can precede an arbitrary number of - before an unsigned number.
>

» You can precede an arbitrary multiple of before a signed number.

Summation an subtraction of fixed-point numbers is easy as they can be treated like integer
numbers when they are written such that the points are over each other. Example:

Given numbers Unsigned treatment Signed treatment
11011011.11011... 11011011.11011... 11011011.11011...

f ..., 101.11101101 |£ 101.11101101 |+ 101.11101101

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

1.3 Multiplication of Fixed-Point Numbers

®— wroo (T
HU

to the length of its factors
with indices #pn and ipy.

. wp-1 inp ihl 0
Fig. 2.3: coef m ~ no P P
Reducing the product length

m o

Wy-l 0

We compute prod = coef * data with coef and data having w. and wg binary places,
respectively, fc and fq of them fractional.

Thenprodhas binary places, - - - - - of them fractional.

Reducing the length of products: |y = prod(ipn : ipl)

Let coef have W binary places, fc of them fractional. Signal data has wqg binary places, fq
of them fractional. The product has

Wp= i e ieeiea e binary places, fo=_.........._..... of them fractional.
Fig. 2.3 illustrates the multiplication of the coefficient coef withwe= Jfe= oo
and the data sample data withwg= , fa=........ The product prod has
W = o e i e e e e e e e e e e e e e e e e binary places,
= of them fractional.

We want to take result vector y out of prod preserving the point. For all bit vectors the LSB
has index 0.

InFig.2.3 yhas wy=___.___. , binary places fy=_._...... of them fractional.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

To apply the VHDL command y<=prod(iph DOWNTO ipl) we have to compute

1.4 Real — Binary Conversion

Exercises (for solutions see — chapter 8) :
Convert 1=3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

2 Exercise Based on Executable VHDL
Listing 4: Code with gaps

(1) LIBRARY ieee; USE ieee.std logic_1164.ALL;
(2) PACKAGE pk filter IS

(3) CONSTANT cDataInWidth:POSITIVE:=4; -- Input-Data Bitwidth

(4) CONSTANT cDataInFract:POSITIVE:=2; -- No of Input-Data fract. Bits
(5) CONSTANT cDataOutWidth:POSITIVE:=5; -- Output-Data Bitwidth

(6) CONSTANT cDataOutFract:POSITIVE:=3; -- No of Output-Data fract Bits
(7) CONSTANT cCoefWidth:POSITIVE:=4; -- Coefficient's Bitwidth

(8) CONSTANT cCoefFract:POSITIVE:=2; -- No of Coef's fractional Bits
(9) SUBTYPE t_DataIn IS std logic_vector (cDataInWidth-1 DOWNTO 0);

(10) SUBTYPE t_DataOut IS std_logic_vector (cDataOutWidth-1 DOWNTO 0);
(11) SUBTYPE t_coef IS std_logic_vector(cCoefwidth-1 DOWNTO 0);
(12) END PACKAGE pk_filter;

(13)
(14) LIBRARY ieee; USE ieee.std_logic_1164.ALL,
(15) ieee.std_logic_signed."+", ieee.std_logic_signed."*";

(16) USE WORK.pk filter.ALL;

(17) ENTITY TestBitslice IS

(18) END ENTITY TestBitslice;

(19)

(20) ARCHITECTURE rtl TestBitslice OF TestBitslice IS
(21) SIGNAL DataIn :t_DataIn;

(22) SIGNAL coef :t_coef;

(23) SIGNAL DataOut:t_DataOut;

(24) SIGNAL product:std_1logic VeCtoOr (.ccececeeecccccecosccccccosccscccsscssses

(25) CONSTANT iPl:NATURAL:IS .ccocececccccccccccccscscscscscsssssssscssssssscccsss

(26) CONSTANT APh:NATURAL IS . cccececocceccccccccccscsccscccscsccscccsccscsccscsssese
(27) BEGIN

(28) DataIn = "0101", "0100" AFTER 10 ns; -- 1.25, 1.00 AFTER 10 ns
(29) coef <= "0101"; --1.25

(30) product <= coef * Dataln; -- 1.5625, 1.25 AFTER 10 ns

(31) DataOut <= product (iPh DOWNTO 1Pl) ...cccececcccccccsccccscsccccccccscscs

(32) END ARCHITECTURE rtl_TestBitslice;

Correspondences with chapter 2.3: fe=cCoefFract, fa-=cDatalnFract, fy=cDataOutFract,
We, Wd, Wp, Wy: cCoefWidth, cDataInWidth, cProdWidht, cDataOutWidth, respectively.

Exercises:

» Complete line (24) to get a product signal that fits to the multiplication of line (30).
» Compute iPl und iPh in lines (25), (26) to fit the bit-slice operation of line (31).

» Extend line (31) to get the bit-slice by bit-vector easy rounding.

» Verify the product, bit-slice and rounding operation of lines (39), (49) by hand.

-4 -

