
1 Exercises: Fixed Point Numbers
1.1 Integral Numbers

There are two ways to interpret a bit vector as integral number: unsigned and signed,
corresponding to the IEEE VHDL libraries std_logic_unsigned and std_logic_signed, resp.

Unsigned interpretation: A bit vector of w bits represents the integer range

Signed interpretation: A bit vector of w bits represents the int. range

1.2 Fixed Point Numerical Representation: The Q Number Format

Unsigned: UQg.f with g integral (deutsch: ganze) and f fractional bits. Width w=g+f.
Signed: Qg.f with 1 sign bit plus g integral and f fraction bits. Width w=1+g+f.

Exercise: The bit string 110.1011 can be interpreted...

... as UQ3.4 format representing

..

... as Q2.4 delivering

..

Unsigned: Range: Resolution: r =

Singed Range: Resolution: r

 You can append an arbitrary number of after the point.

 You can precede an arbitrary number of before an unsigned number.

 You can precede an arbitrary multiple of before a signed number.

Summation an subtraction of fixed-point numbers is easy as they can be treated like integer
numbers when they are written such that the points are over each other. Example:

Given numbers Unsigned treatment Signed treatment
 11011011.11011...

101.11101101

 11011011.11011...

101.11101101

 11011011.11011...

101.11101101

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 2 -

1.3 Multiplication of Fixed-Point Numbers

Fig. 2.3:
Reducing the product length
to the length of its factors
with indices iph and ipl.

coef

data

prod

0wc-1

wp-1 0iph

wd-1 0

wy-1

ipl

0

y

We compute prod = coef * data with coef and data having wc and wd binary places,
respectively, fc and fd of them fractional.

Then prod has binary places, of them fractional.

Reducing the length of products: y = prod(iph : ipl)

Let coef have wc binary places, fc of them fractional. Signal data has wd binary places, fd
of them fractional. The product has

wp = binary places, fp = of them fractional.

Fig. 2.3 illustrates the multiplication of the coefficient coef with wc =, fc =

and the data sample data with wd =, fd = The product prod has

wp = ... binary places,

fp = .. of them fractional.

We want to take result vector y out of prod preserving the point. For all bit vectors the LSB
has index 0.

In Fig. 2.3 y has wy =, binary places fy = of them fractional.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 3 -

To apply the VHDL command y<=prod(iph DOWNTO ipl) we have to compute

ipl = ..

iph = ..

1.4 Real Binary Conversion

Exercises (for solutions see → chapter 8) :
Convert π=3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.

..

..

Convert -π=-3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.

..

..

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 4 -

2 Exercise Based on Executable VHDL
Listing 4: Code with gaps

(1) LIBRARY ieee; USE ieee.std_logic_1164.ALL;
(2) PACKAGE pk_filter IS
(3) CONSTANT cDataInWidth:POSITIVE:=4; -- Input-Data BitWidth
(4) CONSTANT cDataInFract:POSITIVE:=2; -- No of Input-Data fract. Bits
(5) CONSTANT cDataOutWidth:POSITIVE:=5; -- Output-Data BitWidth
(6) CONSTANT cDataOutFract:POSITIVE:=3; -- No of Output-Data fract Bits
(7) CONSTANT cCoefWidth:POSITIVE:=4; -- Coefficient's BitWidth
(8) CONSTANT cCoefFract:POSITIVE:=2; -- No of Coef's fractional Bits
(9) SUBTYPE t_DataIn IS std_logic_vector(cDataInWidth-1 DOWNTO 0);
(10) SUBTYPE t_DataOut IS std_logic_vector(cDataOutWidth-1 DOWNTO 0);
(11) SUBTYPE t_coef IS std_logic_vector(cCoefWidth-1 DOWNTO 0);
(12) END PACKAGE pk_filter;
(13)
(14) LIBRARY ieee; USE ieee.std_logic_1164.ALL,
(15) ieee.std_logic_signed."+", ieee.std_logic_signed."*";
(16) USE WORK.pk_filter.ALL;
(17) ENTITY TestBitslice IS
(18) END ENTITY TestBitslice;
(19)
(20) ARCHITECTURE rtl_TestBitslice OF TestBitslice IS
(21) SIGNAL DataIn :t_DataIn;
(22) SIGNAL coef :t_coef;
(23) SIGNAL DataOut:t_DataOut;

(24) SIGNAL product:std_logic_vector(...................................

...

(25) CONSTANT iPl:NATURAL:= ..

...

(26) CONSTANT iPh:NATURAL:= ..

...

(27) BEGIN
(28) DataIn <= "0101", "0100" AFTER 10 ns; -- 1.25, 1.00 AFTER 10 ns
(29) coef <= "0101"; -- 1.25
(30) product <= coef * DataIn; -- 1.5625, 1.25 AFTER 10 ns

(31) DataOut <= product(iPh DOWNTO iPl)

...

(32) END ARCHITECTURE rtl_TestBitslice;

Correspondences with chapter 2.3: fc=cCoefFract, fd=cDataInFract, fy=cDataOutFract,
wc, wd, wp, wy: cCoefWidth, cDataInWidth, cProdWidht, cDataOutWidth, respectively.

Exercises:
 Complete line (24) to get a product signal that fits to the multiplication of line (30).
 Compute iPl und iPh in lines (25), (26) to fit the bit-slice operation of line (31).
 Extend line (31) to get the bit-slice by bit-vector easy rounding.
 Verify the product, bit-slice and rounding operation of lines (39), (49) by hand.

