# Using Fixed-Point Numbers 

Prof. Dr. Martin J. W. Schubert

Electronics Laboratory
Regensburg University of Applied Sciences
Regensburg


#### Abstract

This tutorial is intended to detail the use of integer and fixed point numbers when processing data samples with micro controllers or FPGAs.


## 1 Introduction

Using integers as fixed point numbers is an essential skill for micro controller and FPGA programming, particularly when digital signal processing (DSP) and A/D - D/A conversion are taken into account.

## The organization of this document is as follows:

Chapter 1 introduction,
Chapter 2 introduces different number representations and conversion algorithms between them,
Chapter 3 discusses rounding techniques,
Chapter 4 offers an exercise,
Chapter 5 summarizes the tutorial,
Chapter 6 gives some references and
Chapter 7 the solutions to the exercises.

## 2 Number Representations (See chapter 6.2 for solutions.)

### 2.1 Integral Numbers

There are two ways to interpret a bit vector as integral number: unsigned and signed, corresponding to the IEEE VHDL libraries std_logic_unsigned and std_logic_signed, resp.

- Unsigned interpretation: A bit vector of $w$ bits represents the integer range $0 \ldots 2^{\mathrm{w}}-\mathbf{1}$.
$\bullet$ Signed interpretation: A bit vector of $w$ bits represents the int. range $-\mathbf{2}^{\mathrm{w}-1} \ldots+\mathbf{2}^{\mathrm{w}-1}-1$.


### 2.2 Fixed Point Numerical Representation: The Q Number Format

Unsigned: UQg.f with $g$ integral (deutsch: ganze) and $f$ fractional bits. Width $w=g+f$.
Signed: Qg.f with 1 sign bit plus $g$ integral and $f$ fraction bits. Width $w=1+g+f$.
Example: 101.1001 can be interpreted as UQ3.4 format representing $1011001 * 2^{-4}=89 / 16=$ 5.5625 or as Q2.4 delivering $-(0100110+1) * 2^{-4}=-(0100111) * 2^{-4}=-39 / 16=-2.4375$.

Exercise: The bit string $\mathbf{1 1 0 . 1 0 1 1}$ can be interpreted...
... as UQ3.4 format representing
... as Q2.4 delivering

Unsigned: $\quad$ Range: $0 \leq A_{U} \leq \frac{2^{g+f}-1}{2^{f}}, \quad \quad$ Resolution: $\mathrm{r}=2^{-\mathrm{f}}=\frac{1}{2^{f}}$.

Singed

$$
\text { Range: }-\frac{2^{g+f}}{2^{f}} \leq A_{S} \leq \frac{2^{g+f}-1}{2^{f}}, \quad \text { Resolution: } \mathrm{r}=2^{-\mathrm{f}}=\frac{1}{2^{f}} .
$$

$>$ You can append an arbitrary number of zeros after the point.
$>$ You can precede an arbitrary number of zeros before an unsigned number.
$>\quad$ You can precede an arbitrary multiple of the sign bit before a signed number.
Summation an subtraction of fixed-point numbers is easy as they can be treated like integer numbers when they are written such that the points are over each other. Example:

| Given numbers | Unsigned treatment | Signed treatment |
| :---: | :---: | :---: |
| 11011011.11011 | 11011011.11011000 | 11011011.11011000 |
| $\pm$ | 101.11101101 | $\pm 00000101.11101101$ |

Table 2.2: Q-formats (as typical for micro controllers), $w$ : total number of bits, $r$ : resolution

| Format | $\boldsymbol{w}$ | $\boldsymbol{g}$ | $\boldsymbol{f}$ | $\boldsymbol{m i n}$ | $\boldsymbol{m a x}$ | $\boldsymbol{r}$ (resolution) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| UQ16 | 16 | 16 | 0 | 0 | $2^{\wedge} 16-\mathrm{r}$ | 1 |
| UQ.16 | 16 | 0 | 16 | 0 | $1-\mathrm{r}$ | $2^{\wedge}-16$ |
| Q15 | 16 | 15 | 0 | $-2^{\wedge} 15$ | $2^{\wedge} 15-\mathrm{r}$ | 1 |
| Q.15 | 16 | 0 | 15 | -1 | $1-\mathrm{r}$ | $2^{\wedge}-15$ |
| UQ16.16 | 32 | 16 | 16 | 0 | $2^{\wedge} 16-\mathrm{r}$ | $2^{\wedge}-16$ |
| Q15.16 | 32 | 15 | 16 | $-2^{\wedge} 15$ | $2^{\wedge} 15-\mathrm{r}$ | $2^{\wedge}-16$ |

Caution: Sometimes you will find the so-called Qf-Format with Q15 meaning Qg.15, g=?. Then we know about 1 sign bit and 15 fractional bits but an unknown number of integral bits. This causes uncertainty! Avoid it, even in a C program with all integers having 32 bits (because there also exist short int ( 16 bits) and char ( 8 bits) types in C ).
$>$ You cannot mark the Q -format within the bit string. It's a predefined arrangement of your design.

### 2.3 Multiplication of Fixed-Point Numbers

Fig. 2.3:
Reducing the product length to the length of its factors with indices $\boldsymbol{i}_{\mathrm{ph}}$ and $\boldsymbol{i}_{\mathrm{pl}}$.


We compute prod $=$ coef $*$ data with coef and data having $\mathbf{w}_{\mathbf{c}}$ and $\mathbf{w}_{\mathbf{d}}$ binary places, respectively, $\mathbf{f}_{\mathrm{c}}$ and $\mathbf{f}_{\mathbf{d}}$ of them fractional. Then prod has $\mathbf{w}_{\mathbf{p}}=\mathbf{w}_{\mathbf{c}}+\mathbf{w}_{\mathbf{d}}$ binary places, $\mathbf{f}_{\mathrm{p}}=\mathbf{f}_{\mathbf{c}}+\mathbf{f}_{\mathbf{d}}$ of them fractional.

Mathematical proof: We can write coef $=$ icoef $\cdot 2^{-\mathrm{fc}}$ and data $=$ idata $\cdot 2^{-\mathrm{fd}}$ with ixxx integral. Consequently, the product can be written as
prod $=$ coef $\cdot$ data $=$ icoef $\cdot 2^{-f c} \cdot$ idata $\cdot 2^{-f d}=$ icoef $\cdot$ idata $\cdot 2^{-(f c+f d)}$.

## Reducing the length of products:

Proof: We want to reduce the width of prod by taking result vector $\mathbf{y}$ out of it. Result $\mathbf{y}$ has $\mathbf{w}_{\mathbf{y}}$ bits in formatted as [U]Qgy. $\mathbf{f}_{\mathbf{y}}$.

Considering fractional bits only:
The fractional part of product prod consists of bits $\mathbf{f}_{\mathbf{p}}-1 \ldots 0$.
The fractional part of result $\mathbf{y}$ will consist of bits $\mathbf{f}_{\mathbf{y}}-1 \ldots 0$.

Preserving the point we get $\mathbf{y}\left(\mathbf{f}_{\mathbf{y}}-1: 0\right)=\mathbf{p}\left(\mathbf{f}_{\mathbf{p}}-1: \mathbf{f}_{\mathbf{p}}-\mathbf{f}_{\mathbf{y}}\right)$ with lowest index $\mathbf{i}_{\mathbf{p l}}=\mathbf{f}_{\mathbf{p}}-\mathbf{f}_{\mathbf{y}}$.
Considering integral bits also:
As $\mathbf{y}=\mathbf{y}\left(\mathbf{w}_{\mathbf{y}}-1: 0\right)$ its max. index is $\mathbf{w}_{\mathbf{y}}-1$ larger than its min. index: $\mathbf{i}_{\mathbf{p h}}=\mathbf{i}_{\mathbf{p l}}+\left(\mathbf{w}_{\mathbf{y}} \mathbf{- 1}\right)$.
Consequently (formula to be used in exercise chapter 4):

$$
y=\operatorname{prod}\left(i_{p h}: i_{p l}\right) \quad \text { with } \quad i_{p l}=f_{p}-f_{\mathrm{y}}, \quad i_{\mathrm{ph}}=i_{\mathrm{pl}}+\mathbf{w}_{\mathrm{y}}-\mathbf{1}
$$

Exercises (for solutions see $\rightarrow$ chapter 6) :
Let coef have $\mathbf{w}_{\mathbf{c}}$ binary places, $\mathbf{f}_{\mathbf{c}}$ of them fractional. Signal data has $\mathbf{w}_{\mathbf{d}}$ binary places, $\mathbf{f}_{\mathbf{d}}$ of them fractional. The product has


Fig. 2.3 illustrates the multiplication of the coefficient coef with $\mathbf{w}_{\mathbf{c}}=\ldots . . ., \mathbf{f}_{\mathbf{c}}=$ $\qquad$ and the data sample data with $\mathbf{w}_{\mathbf{d}}=\ldots \ldots, \quad \mathbf{f}_{\mathbf{d}}=\ldots \ldots$. . . . The product prod has

$$
\mathbf{w}_{\mathbf{p}}=
$$

binary places,
$\mathbf{f}_{\mathrm{p}}=$ of them fractional.

We want to take result vector y out of prod preserving the point. For all bit vectors the LSB has index 0 .

In Fig. $2.3 \mathbf{y}$ has $\mathbf{w}_{\mathbf{y}}=\ldots \ldots$, . . binary places $\mathbf{f}_{\mathbf{y}}=\ldots \ldots$ of them fractional.

To apply the VHDL command $\mathbf{y}<=$ prod (iph DOWNTO ipl) we have to compute
$\mathbf{i}_{\mathrm{pl}}=$
$\mathbf{i}_{\mathrm{ph}}=$

### 2.4 Binary $\rightarrow$ Hexadecimal $\rightarrow$ Binary Conversion

Table 2.4: Mapping decimal, hexadecimal and binary numbers

| Decimal <br> number | Hexadecimal <br> Digit | Bit vector | Decimal <br> number | Hexadecimal <br> Digit | Bit <br> vector |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0000 |  | 8 | 8 | 1000 |
| 1 | 1 | 0001 |  | 9 | 9 | 1001 |
| 2 | 2 | 0010 |  | 10 | A | 1010 |
| 3 | 3 | 0011 |  | 11 | B | 1011 |
| 4 | 4 | 0100 |  | 12 | C | 1100 |
| 5 | 5 | 0101 |  | 13 | D | 1101 |
| 6 | 6 | 0110 |  | 14 | E | 1110 |
| 7 | 7 | 0111 |  | 15 | F | 1111 |

Hexadecimal numbers are easier to read and remember than bit vectors. Starting from the point bits are subdivided into packages of 4 bits and replaced by equivalent hex-digits.

Example: $10100101101.011010110101_{2}=10100101101.011010110101_{2}=52 \mathrm{D} \cdot 6 \mathrm{~B} 5{ }_{16}$.
Convert the hex-number back to a bit vector translating every hex-digit to a 4-bit string.
Example: = 52D.6B516 $=>10100101101.0110101101012$.

## Exercise: convert to binary:

ABC.DEF ${ }_{16}=$.

## Exercise: convert to hex:

$111111101101.110010111010_{2}=$

### 2.5 Decimal $\rightarrow$ Hexadecimal $\rightarrow$ Decimal Conversion

Decide for the number of fractional hex-digits, $\mathbf{f}_{\mathrm{h}}$, and multiply the decimal number with $16^{\text {fh }}$. If desired the decimal number can then be rounded or truncated. The resulting integral number is then converted to a hex-number.

Example: We want to have $\mathbf{f}_{\mathrm{h}}=3$ hexadecimal fractional digits.

$$
\begin{aligned}
1234.567_{10} & =1234.567_{10} *\left(16^{3} * 16^{-3}\right)=1234.567_{10} * 16^{3} * 16^{-3}=5056786.432_{10} * 16^{-3} \\
& \approx 5056786_{10} * 16^{-3}=4 \mathrm{D} 2912_{16} * 16^{-3}=4 \mathrm{D} 2.912_{16}
\end{aligned}
$$

Easier to compute might be the form separating integral and fractional parts:

$$
\begin{aligned}
1234.567_{10} & =1234_{10}+0.567_{10}=4 \mathrm{D} 2_{16}+0.567_{10} * 16^{3} * 16^{-3}=4 \mathrm{D} 2_{16}+2322.432_{10} * 16^{-3} \\
& \approx 4 \mathrm{D} 2_{16}+2322_{10} * 16^{-3}=4 \mathrm{D} 2_{16}+912_{16} * 16^{-3}=4 \mathrm{D} 2.912_{16}
\end{aligned}
$$

Remember: $1234_{10}=\left(77^{*} 16\right)+2=((4 * 16)+13) * 16+4=4 * 16^{2}+13^{*} 16^{1}+2^{*} 16^{0}=4 \mathrm{D} 2_{16}$.
Back translation to decimal is performed by multiplying hex-digit on position $m$ with $16^{\mathrm{m}}$.
Example: 4D2.912 ${ }_{16}=\mathbf{4}^{*} 16^{2}+\mathbf{1 3}^{*} 16^{1}+\mathbf{2}^{*} 16^{0}+\mathbf{9}^{*} 16^{-1}+\mathbf{1}^{*} 16^{-2}+\mathbf{2}^{*} 16^{-3} \approx 1234.56689$.
Exercise: convert to decimal $(\mathrm{f}=3):$ ABC. $\mathrm{DEF}_{16}=$
Exercise: convert to hex (f=3): $2748.871_{16}=$

### 2.6 Real $\rightarrow$ Binary Conversion

Factors - like filter coefficients - are computed as real numbers and have to be converted to bit vectors. Let's assume the number $\mathrm{rVal}=1.234$ has to be converted to a bit string with 8 binary places, 6 of them fractional. The example below shows a possible way to accomplish this.
$\mathrm{rVal}=\mathrm{rVal} \cdot(1)=\mathrm{rVal} \cdot\left(2^{6} \cdot 2^{-6}\right)=\left(\mathrm{rVal} \cdot 2^{6}\right) \cdot 2^{-6}=(1.234 \cdot 64) \cdot 2^{-6}=78.976 \cdot 2^{-6}$
$\mathrm{iVal}=\operatorname{round}\left(\mathrm{rVal} \cdot 2^{6}\right) \cdot 2^{-6}=\operatorname{round}(78.976) \cdot 2^{-6}=79 \cdot 2^{-6}=01001111_{2} \cdot 2^{-6}=01.001111_{2}$.
For the negative $\mathrm{rVal2}=-\mathrm{rVal}=-1.234$ we obtain in the same way $\mathrm{rVal2}=-78.976 \cdot 2-6$ and $\mathrm{iVal2}=\operatorname{round}\left(\mathrm{rVal2} 22^{6}\right) \cdot 2^{-6}=\operatorname{round}(-78.976) \cdot 2^{-6}=-79 \cdot 2^{-6}=101100012 \cdot 2^{-6}=$ $10.110001_{2}$.

Positive an negative numbers are distinguished by the first bit. Be careful to not set this bit accidentally by a too large positive number. The largest positive number for a signed 8 -Bit representation is $\mathrm{iVal}_{\max }=2^{7}-1=127$ and the largest negative number is $\mathrm{iVal}_{\min }=-2^{7}=-128$.

Exercises (for solutions see $\rightarrow$ chapter 8) :
Convert $\pi=3.14159$ into a signed bit vector with 8 binary places, 4 of them fractional.

Convert $-\pi=-3.14159$ into a signed bit vector with 8 binary places, 4 of them fractional.

### 2.7 Floating-Point Numbers

Fig. 2.7: Floating-point data structure

| $s$ | exponent | mantissa |
| :---: | :---: | :---: |

Table 2.7: IEEE 754 binary formats [1]

| Format | Sign | Exponent | Mantissa | Total number of bits | Exponent bias |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Half | 1 | 5 | 10 | 16 | 15 |
| Single | 1 | 8 | 23 | 32 | 127 |
| Double | 1 | 11 | 52 | 64 | 1023 |
| Quad | 1 | 15 | 112 | 128 | 16383 |

The floating point data structure has 1 sign bit $s, e$ exponent bits and $m$ mantissa bits. The number is computed from
real value $=(-1)^{s}$ x $2^{\text {exponent - exponent_bias }} \mathbf{x}$ mantissa
The exponent is biased by $\left(2^{\mathrm{e}-1}\right)$-1 to obtain both positive and negative exponents.
If possible, the mantissa is stored normalized i.e. with one bit before the point. Example: the number 101.1101 is stored as $1.011101 \times 2^{+2}$.

The number is said to be de-normalized if the MSB of the mantissa is 0 and its fraction $\neq 0$.
Particular situations

- $\pm 0$ (depending on the sign bit) : exponent $=0$ and mantissa $=0$.
- $\pm \infty$ (depending on the sign bit) : exponent $=2^{\mathrm{e}}-1$ ( $=$ all ones) and mantissa fraction $=0$
- NaN (Not a Number) :

Floating point numbers are well suited for multiplication and division, as $2^{A} \times 2^{B}=2^{A+B}$, but not for addition and subtraction, as for this operations it has be brought into a fixed-point like format. Typically, working with floating-point numbers is significantly more time consuming than working with fixed-point numbers. However, the range of floating-point numbers is significantly larger than that of fixed-point numbers.

## 3 Rounding and Truncation

## Truncation

Truncating a number with integral part $g$ and fractional part $f$ (i.e. $f<1$ ):
$g . f$ truncates to $g$ (, regardless whether $g$ is positive or negative):
Example:5.8 truncates to 5, -5.8 truncates to -5 .

## Rounding Threshold

The threshold for rounding is $1 / 2 \cdot$ LSB with LSB being the least significant bit. For integral numbers $\mathrm{LSB}=1$. With Base (or radix) $\mathrm{B}=10,2$, 16 we get $1 / 2 \mathrm{~B}=5,1,8$, respectively. Consequently the numerical thresholds are $5 \cdot 10^{-1}=0.510=1 \cdot 2^{-1}=0.1_{2}=8 \cdot 16^{-1}=0.8_{16}$.

## Rounding:

This method corresponds to the C or Matlab expression $\operatorname{round}(g . f)$ for decimal numbers.
Positive numbers: $g . f$ rounds to $g$ when $f<0.5$ and to $g+l$ when $f \geq 0.5$.
Negative numbers: g.f rounds to $g$ when $f<0.5$ and to $g-l$ when $f \geq 0.5$.

Possible realization:

+ For numbers $\geq 0:$ rounded_number $=g+f_{1}$, with $f_{1}$ being the first fractional bit.
- For numbers $<0$ : rounded_number $=-\left(g^{\prime}+f_{i^{\prime}}\right)$ with $g^{\prime} \cdot f^{\prime}=-(g . f)$.


## Bit-Vector Easy Rounding Scheme:

This method corresponds to the C or Matlab expression floor $(g . f+0.5)$ for decimal numbers.
Easy realization: bver_rounded_number $=g+f_{l}$ with $f_{l}$ being the first fractional bit.

## Exercise:

Fill the empty fields in Table 3-1 to understand the differences between truncation, mathematical rounding and the bit-vector easy rounding presented above. The bit-strings are assumed ot be 5-bit signed numbers.

Table 3-1: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

| binary | binary | decimal | decimal | truncated |  | rounded |  | $+\mathbf{0 . 1} \mathbf{1}_{2}$ truncated |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | rational | rational |  | bin | $=$ dec | bin | $=$ dec | bin | $=\mathrm{dec}$ |
| 01.001 | $01001 / 2^{3}$ | $09 / 8$ | +1.125 | 01 | +1 | 01 | +1 | 01 | +1 |
| 01.011 | $01011 / 2^{3}$ | $11 / 8$ | +1.375 |  |  |  |  |  |  |
| 01.100 | $01100 / 2^{3}$ | $12 / 8$ | +1.500 |  |  |  |  |  |  |
| 01.101 | $01101 / 2^{3}$ | $13 / 8$ | +1.625 |  |  |  |  |  |  |
| 01.111 | $01111 / 2^{3}$ | $15 / 8$ | +1.875 |  |  |  |  |  |  |
| 10.111 | $10111 / 2^{3}$ | $-09 / 8$ | -1.125 | 10 | +2 | 11 | -1 | 11 | -1 |
| 10.101 | $10101 / 2^{3}$ | $-11 / 8$ | -1.375 |  |  |  |  |  |  |
| 10.100 | $10100 / 2^{3}$ | $-12 / 8$ | -1.500 |  |  |  |  |  |  |
| 10.011 | $10011 / 2^{3}$ | $-13 / 8$ | -1.6250 |  |  |  |  |  |  |
| 10.001 | $10001 / 2^{3}$ | $-15 / 8$ | -1.8750 |  |  |  |  |  |  |

Check with table 3-2 when rounding and bit-vector easy rounding obtains same or different results:

Table 3-2: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

| binary | decimal | decimal | rounded |  | $+\mathbf{0 . 1 _ { 2 }}$ truncated |  | iden- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | rational | fixed point | bin | $=\mathrm{dec}$ | bin | $=$ dec | tical |
| 001.01111111 | $+383 / 2^{8}$ | 1.49609375 | 001 | +1 | 001 | +1 | yes |
| 001.10000000 | $+384 / 2^{8}$ | 1.5 |  |  |  |  |  |
| 001.10000001 | $+385 / 2^{8}$ | 1.50390625 |  |  |  |  |  |
| 110.10000001 | $-384 / 2^{8}$ | -1.49609375 | 111 | -1 | 111 | -1 | yes |
| 110.10000000 | $-384 / 2^{8}$ | -1.5 |  |  |  |  |  |
| 110.01111111 | $+385 / 2^{8}$ | -1.50390625 |  |  |  |  |  |

What is correct?: The difference between rounding and bit-vector easy rounding increases / decreases with the number of fractional bits.


Fig. 3: Matlab plot. Top down: truncation, rounding, bit-vector easy rounding, 3-level quantization. Differences between the second and third line are in $-n .5$ only.

## 4 Exercise Based on Executable VHDL

## Listing 4: Code with gaps

```
LIBRARY ieee; USE ieee.std_logic_1164.ALL;
PACKAGE pk filter IS
    CONSTANT cDataInWidth:POSITIVE:=4; -- Input-Data BitWidth
    CONSTANT cDataInFract:POSITIVE:=2; -- No of Input-Data fract. Bits
    CONSTANT cDataOutWidth:POSITIVE:=5; -- Output-Data BitWidth
    CONSTANT cDataOutFract:POSITIVE:=3; -- No of Output-Data fract Bits
    CONSTANT cCoefWidth:POSITIVE:=4; -- Coefficient's BitWidth
    CONSTANT cCoefFract:POSITIVE:=2; -- No of Coef's fractional Bits
    SUBTYPE t_DataIn IS std_logic_vector(cDataInWidth-1 DOWNTO 0);
    SUBTYPE t_DataOut IS std_logic_vector(cDataOutWidth-1 DOWNTO 0);
    SUBTYPE t_coef IS std_log}ic_vec̄tor(cCoefWidth-1 DOWNTO 0)
END PACKAGE pk filter;
LIBRARY ieee; USE ieee.std logic 1164.ALL,
ieee.std_\overline{logic_\overline{signed."+", ieee.std_logic_signed."*";}}\mathbf{|}=\mp@code{l}
USE WORK.pk filter.ALL;
ENTITY Test\overline{Bitslice IS}
END ENTITY TestBitslice;
ARCHITECTURE rtl TestBitslice OF TestBitslice IS
    SIGNAL DataIn :t_DataIn;
    SIGNAL coef :t_coef;
    SIGNAL DataOut:t_DataOut;
```

    SIGNAL product:std_logic_vector (
    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    CONSTANT iPl:NATURAL:=
    . \(-\ldots \ldots \ldots\)
    CONSTANT iPh:NATURAL:= . . . . . . . . . . . . . . . . . . . ..........................
    BEGIN
        DataIn <= "0101", "0100" AFTER \(10 \mathrm{~ns} ;-1.25,1.00\) AFTER 10 ns
        coef <= "0101"; -- 1.25
        product <= coef * DataIn; -- \(1.5625,1.25\) AFTER 10 ns
    DataOut <= product(iPh DOWNTO iPl)
    Correspondences with chapter 2.3: $\mathrm{f}_{\mathrm{c}}=\mathrm{c}$ CoefFract, $\mathrm{f}_{\mathrm{d}}=\mathrm{c}$ DataInFract, $\mathrm{f}_{\mathrm{y}}=\mathrm{cDataOutFract}$, $\mathrm{w}_{\mathrm{c}}, \mathrm{w}_{\mathrm{d}}, \mathrm{w}_{\mathrm{p}}, \mathrm{w}_{\mathrm{y}}$ : cCoefWidth, cDataInWidth, cProdWidht, cDataOutWidth, respectively.

## Exercises:

$>$ Complete line (24) to get a product signal that fits to the multiplication of line (30).
$>$ Compute $i P l$ und $i P h$ in lines (25), (26) to fit the bit-slice operation of line (31).
$>$ Extend line (31) to get the bit-slice by bit-vector easy rounding.
$>$ Verify the product, bit-slice and rounding operation of lines (39), (49) by hand.

## 5 Summary

Binary, decimal and hexadecimal coding were presented as well as conversion techniques between them, particularly when these number representations appearing fixed-point formats. After a short glance on floating-point numbers rounding was considered and an easy way to round bit vectors was presented. The tutorial finished with an example based on VHDL.

## 6 References

[1] IEEE standard 754, available: http://www.ieee.org/publications_standards/publications/subscriptions/prod/standards_overview.html.
2] Available: http://de.wikipedia.org -> fixed-point

## 7 Appendix: Solutions to the Exercises

### 7.1 Introduction

### 7.2 Number Representations

### 7.2.1 Integral Numbers

### 7.2.2 Fixed Point Numerical Representation: The Q Number Format

Exercise: The bit string $\mathbf{1 1 0 . 1 0 1 1}$ can be interpreted...
... as UQ3.4 format representing
$1101011 * 2^{-4}=107 / 16=6.6875$
... as Q2.4 delivering
$-(0010100+1) * 2^{-4}=-(0010101) * 2^{-4}=-21 / 16=-1.3125$.

### 7.2.3 Multiplication of Fixed-Point Numbers

Exercises (for solutions see $\rightarrow$ chapter 8) :
Let coef have $\mathbf{w}_{\mathbf{c}}$ binary places, $\mathbf{f}_{\mathbf{c}}$ of them fractional. Signal data has $\mathbf{w}_{\mathbf{d}}$ binary places, $\mathbf{f}_{\mathbf{d}}$ of them fractional. The product has
$\mathbf{w}_{\mathrm{p}}=\ldots . \mathbf{w}_{\mathrm{c}}+\mathbf{w}_{\mathrm{d}} \ldots \ldots$ binary places, $\quad \mathbf{f}_{\mathrm{p}}=\ldots \mathbf{f}_{\mathrm{c}}+\mathbf{f}_{\mathrm{d}} \ldots \ldots$ of them fractional.
Fig. 2.3 illustrates the multiplication of the coefficient coef with $\mathbf{w}_{\mathbf{c}}=\ldots 7 \ldots, f_{c}=\ldots 4$. .
and the data sample data with $\mathbf{w}_{\mathbf{d}}=\ldots 5 \ldots, \quad \mathbf{f}_{\mathbf{d}}=\ldots 3 \ldots$ The product prod has
$\mathbf{w}_{\mathbf{p}}=\ldots \mathbf{w}_{\mathrm{c}}+\mathbf{w}_{\mathrm{d}}=7+5=12 \ldots . . . . . . . . .$.
$f_{p}=\ldots f_{c}+f_{d}=4+3=7 \ldots . . . . . . . . . .$.
We want to take $y$ out of prod preserving the point. For all bit vectors the LSB has index 0 .
In Fig. 2.3 y has $\mathbf{w}_{\mathbf{y}}=\ldots 7 \ldots$, binary places $\mathbf{f}_{\mathbf{y}}=\ldots 5 \ldots$ of them fractional.
To apply the VHDL command $\mathbf{y}<=$ prod (iph DOWNTO ipl) we have to compute
$\mathrm{i}_{\mathrm{pl}}=\ldots \mathrm{f}_{\mathrm{p}}-\mathrm{w}_{\mathrm{y}}=7-5=2$
$\mathbf{i}_{\mathrm{ph}}=\ldots \mathrm{i}_{\mathrm{p} 1}+\mathrm{w}_{\mathrm{y}}-1=2+7-1=8$

### 7.2.4 Binary to Hexadecimal to Binary Conversion

Exercise: convert to binary:
$A B C . D_{16}=101010111100$. $110111101111_{2}$.
Exercise: convert to hex:
$111111101101.110010111010_{2}=$ FED. CBA ${ }_{16}$

### 7.2.5 Decimal to Hexadecimal to Decimal Conversion

Exercise: convert to decimal (f=3) : ABC. DEF ${ }_{16}=\ldots . .$. . $2748.8708496 \ldots .$. . .
Exercise: convert to hex ( $\mathrm{f}=3$ ): $2748.871_{16}=\ldots . \mathrm{ABC}+0.871 \cdot 16^{-3}=\ldots .$.
$=A B C+3566.79 \approx=A B C+3567 \cdot 16^{-3}=A B C+D E F \cdot 16^{-3}=A B C . D E F$

### 7.2.6 Real-to-Binary Conversion

Exercises (for solutions see $\rightarrow$ chapter 8) :
Convert $\pi=3.14159$ into a signed bit vector with 8 binary places, 4 of them fractional.
$3.14159 \cdot\left(2^{4} \cdot 2^{-4}\right)=(3.14159 .16) \cdot 2^{-4}=50.26 \ldots \cdot 2^{-4}=50 \cdot 2^{-4}$ $50_{10} \cdot 2^{-4}=00110010_{2} \cdot 2^{-4}=0011.0010_{2}$

Convert $-\pi=-3.14159$ into a signed bit vector with 8 binary places, 4 of them fractional.
$-3.14159 \cdot\left(2^{4} \cdot 2^{-4}\right)=(-3.14159 .16) \cdot 2^{-4}=-50.26 \ldots \cdot 2^{-4}=-50 \cdot 2^{-4}$ $\left(-50_{10}\right) \cdot 2^{-4}=\left(\left(\sim 0011.0010_{2}\right)+1\right) \cdot 2^{-4}=11001110_{2} \cdot 2^{-4}=1100.1110_{2}$

### 7.3 Rounding and Truncation

Table 3-1: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

| binary | bin rat. | dec. rat. | decimal | truncated |  | rounded |  | +0.12 truncated |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | bin | $=\mathrm{dec}$ | bin | $=\mathrm{dec}$ | bin | $=\mathrm{dec}$ |
| 01.001 | $01001 / 2^{3}$ | 09 / 8 | +1.125 | 01 | +1 | 01 | +1 | 01 | +1 |
| 01.011 | $01011 / 2^{3}$ | $11 / 8$ | +1.375 | 01 | +1 | 01 | +1 | 01 | +1 |
| 01.100 | $01100 / 2^{3}$ | 12/8 | +1.500 | 01 | +1 | 10 | +2 | 10 | +2 |
| 01.101 | $01101 / 2^{3}$ | $13 / 8$ | +1.625 | 01 | +1 | 10 | +2 | 10 | +2 |
| 01.111 | $01111 / 2^{3}$ | 15/8 | +1.875 | 01 | +1 | 10 | +2 | 10 | +2 |
| 10.111 | $10111 / 2^{3}$ | -09 / 8 | -1.125 | 10 | +2 | 11 | -1 | 11 | -1 |
| 10.101 | $10101 / 2^{3}$ | -11/8 | -1.375 | 10 | +2 | 01 | -1 | 11 | -1 |
| 10.100 | $10100 / 2^{3}$ | -12/8 | -1.500 | 10 | -2 | 10 | -2 | 11 | -1 |
| 10.011 | $10011 / 2^{3}$ | -13/8 | -1.6250 | 10 | -2 | -2 | -2 | 10 | -2 |
| 10.001 | $10001 / 2^{3}$ | -15/8 | -1.8750 | 10 | -2 | -2 | -2 | 10 | -2 |

Table 3-2: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

| binary | decimal | decimal | rounded |  | $+\mathbf{0 . 1 _ { 2 }}$ truncated |  | iden- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | rational | fixed point | bin | =dec | bin | $=$ dec | tical |
| 001.0111111 | $+383 / 2^{8}$ | 1.49609375 | 001 | +1 | 001 | +1 | yes |
| 001.10000000 | $+384 / 2^{8}$ | 1.5 | 010 | +2 | 010 | +2 | yes |
| 001.10000001 | $+385 / 2^{8}$ | 1.50390625 | 010 | +2 | 010 | +2 | yes |
| 110.10000001 | $-384 / 2^{8}$ | -1.49609375 | 111 | -1 | 111 | -1 | yes |
| 110.10000000 | $-384 / 2^{8}$ | -1.5 | 110 | -2 | 111 | -1 | no |
| 110.01111111 | $+385 / 2^{8}$ | -1.50390625 | 110 | -2 | 110 | -2 | yes |

Correct: The difference between rounding and bit-vector easy rounding decreases with the number of fractional bits.

### 7.4 Exercise Based on Executable VHDL

## Solutions:

(24) SIGNAL product:std_logic_vector (cDataInWidth+cCoefWidth-1 DOWNTO 0);
(25) CONSTANT iPl:NATURAL:=cCoefFract+cDataInFract-cDataOutFract;
(26) CONSTANT iPh:NATURAL:=iPl+cDataOutWidth-1;
(31) DataOut $<=$ product(iPh DOWNTO iPl) + product(iPl-1);

## Verification of product and rounding by hand:

Factors:

```
DataIn = "01.01" , "01.00" AFTER 10 ns; -- = 1.5625 -> 1.25
coef = "01.01"; -- = 1.5
```

No rounding:

```
product = "0001.1001", "0001.0100" AFTER 10 ns; -- = 1.5625 -> 1.25
DataOut = "01.100" , " 01.010" AFTER 10 ns; -- = 1.5 -> 1.25
```

With bit-vector easy rounding:

```
product = "0001.1001", "0001.0100" AFTER 10 ns; -- = 1.5625 -> 1.25
DataOut = "01.101" , " 01.010" AFTER 10 ns; -- = 1.625 -> 1.25
```

