

OSTBAYERISCHE TECHNISCHE HOCHSCHULE REGENSBURG

ELEKTRO- UND INFORMATIONSTECHNIK

Using Fixed-Point Numbers

Prof. Dr. Martin J. W. Schubert Electronics Laboratory Regensburg University of Applied Sciences Regensburg **Abstract.** This tutorial is intended to detail the use of integer and fixed point numbers when processing data samples with micro controllers or FPGAs.

1 Introduction

Using integers as fixed point numbers is an essential skill for micro controller and FPGA programming, particularly when digital signal processing (DSP) and A/D - D/A conversion are taken into account.

The organization of this document is as follows:

Chapter 1 introduction,

- Chapter 2 introduces different number representations and conversion algorithms between them,
- Chapter 3 discusses rounding techniques,
- Chapter 4 offers an exercise,
- Chapter 5 summarizes the tutorial,
- Chapter 6 gives some references and
- Chapter 7 the solutions to the exercises.

2 Number Representations (See chapter 6.2 for solutions.)

2.1 Integral Numbers

There are two ways to interpret a bit vector as integral number: *unsigned* and *signed*, corresponding to the *IEEE* VHDL libraries *std_logic_unsigned* and *std_logic_signed*, resp.

• Unsigned interpretation: A bit vector of w bits represents the integer range $0 \dots 2^w - 1$.

• Signed interpretation: A bit vector of w bits represents the int. range $-2^{w-1} \dots +2^{w-1} - 1$.

2.2 Fixed Point Numerical Representation: The Q Number Format

Unsigned: UQg.f with g integral (deutsch: ganze) and f fractional bits. Width w=g+f. Signed: Qg.f with 1 sign bit plus g integral and f fraction bits. Width w=l+g+f.

Example: 101.1001 can be interpreted as UQ3.4 format representing $1011001*2^{-4} = 89/16 = 5.5625$ or as Q2.4 delivering $-(0100110+1)*2^{-4} = -(0100111)*2^{-4} = -39/16 = -2.4375$.

Exercise: The bit string 110.1011 can be interpreted...

... as UQ3.4 format representing

... as Q2.4 delivering

Unsigned:

Singed

Range: $0 \le A_U \le \frac{2^{g+f} - 1}{2^f}$,

Resolution: $r = 2^{-f} = \frac{1}{2^{f}}$.

Range: $-\frac{2^{g+f}}{2^f} \le A_s \le \frac{2^{g+f}-1}{2^f}$, Resolution: $r = 2^{-f} = \frac{1}{2^f}$.

- > You can append an arbitrary number of zeros after the point.
- You can precede an arbitrary number of zeros before an unsigned number.
- You can precede an arbitrary multiple of the sign bit before a signed number.

Summation an subtraction of fixed-point numbers is easy as they can be treated like integer numbers when they are written such that the points are over each other. Example:

Given numbers	Unsigned treatment	Signed treatment
11011011.11011	11011011.11011000	11011011.11011000
± 101.11101101	± 00000 101.11101101	± 11111 101.11101101

Format	W	g	f	min	max	r (resolution)
UQ16	16	16	0	0	2^16 - r	1
UQ.16	16	0	16	0	1 - r	2^-16
Q15 Q.15	16	15	0	-2^15	2^15 - r	1
Q.15	16	0	15	-1	1 - r	2^-15
UQ16.16	32	16	16	0	2^16 - r	2^-16
Q15.16	32	15	16	-2^15	2^15 - r	2^-16

Table 2.2: Q-formats (as typical for micro controllers), w: total number of bits, r: resolution

Caution: Sometimes you will find the so-called Qf-Format with Q15 meaning Qg.15, g=?. Then we know about 1 sign bit and 15 fractional bits but an unknown number of integral bits. This causes uncertainty! Avoid it, even in a C program with all *integers* having 32 bits (because there also exist *short int* (16 bits) and *char* (8 bits) types in C).

You cannot mark the Q-format within the bit string. It's a predefined arrangement of your design.

2.3 Multiplication of Fixed-Point Numbers

We compute **prod** = **coef** * **data** with **coef** and **data** having w_c and w_d binary places, respectively, f_c and f_d of them fractional. Then **prod** has $w_p=w_c+w_d$ binary places, $f_p=f_c+f_d$ of them fractional.

```
Mathematical proof: We can write coef = icoef \cdot 2^{-fc} and data = idata \cdot 2^{-fd} with ixxx integral.
Consequently, the product can be written as
prod = coef \cdot data = icoef \cdot 2^{-fc} \cdot idata \cdot 2^{-fd} = icoef \cdot idata \cdot 2^{-(fc+fd)}.
```

Reducing the length of products:

Proof: We want to reduce the width of **prod** by taking result vector y out of it. Result y has w_y bits in formatted as $[U]Qg_y.f_y$.

Considering fractional bits only: The fractional part of product **prod** consists of bits f_p -1...0. The fractional part of result y will consist of bits f_y -1...0. Preserving the point we get $\mathbf{y}(\mathbf{f}_{y}-1:0) = \mathbf{p}(\mathbf{f}_{p}-1:\mathbf{f}_{p}-\mathbf{f}_{y})$ with lowest index $\mathbf{i}_{pl} = \mathbf{f}_{p}-\mathbf{f}_{y}$.

Considering integral bits also:

As $y = y(w_y-1:0)$ its max. index is w_y-1 larger than its min. index: $i_{ph} = i_{pl} + (w_y-1)$.

Consequently (formula to be used in exercise chapter 4):

$$y = prod(i_{ph} : i_{pl})$$
 with $i_{pl} = f_p - f_y$, $i_{ph} = i_{pl} + w_y - 1$

Exercises (for solutions see \rightarrow chapter 6) :

Let **coef** have w_c binary places, f_c of them fractional. Signal **data** has w_d binary places, f_d of them fractional. The product has

 $w_p = \dots \dots \dots$ binary places, $f_p = \dots \dots \dots \dots$ of them fractional.

Fig. 2.3 illustrates the multiplication of the coefficient **coef** with $\mathbf{w}_c = \ldots, \mathbf{f}_c = \ldots$

and the data sample data with $w_d = \ldots \ldots , f_d = \ldots \ldots$. The product prod has

We want to take result vector **y** out of **prod** preserving the point. For all bit vectors the LSB has index 0.

In Fig. 2.3 **y** has $\mathbf{w}_{\mathbf{y}} = \ldots$, binary places $\mathbf{f}_{\mathbf{y}} = \ldots$ of them fractional.

To apply the VHDL command y<=prod(iph DOWNTO ipl) we have to compute

 $i_{pl} = \ldots$

2.4 Binary → Hexadecimal → Binary Conversion

Table 2.4: Mapping decimal, hexadecimal and binary numbers

Decimal	Hexadecimal	Bit vector	Decimal	Hexadecimal	Bit
number	Digit		number	Digit	vector
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	10	А	1010
3	3	0011	11	В	1011
4	4	0100	12	С	1100
5	5	0101	13	D	1101
6	6	0110	14	E	1110
7	7	0111	15	F	1111

Hexadecimal numbers are easier to read and remember than bit vectors. Starting from the point bits are subdivided into packages of 4 bits and replaced by equivalent hex-digits.

Example: 10100101101.011010101012 = 101 0010 1101 . 0110 1011 01012 = 52D.6B5₁₆.

Convert the hex-number back to a bit vector translating every hex-digit to a 4-bit string.

Example: = 52D.6B5₁₆ => 101 0010 1101 . 0110 1011 0101₂.

Exercise: convert to binary:

 $ABC.DEF_{16} = .$

Exercise: convert to hex:

1111 1110 1101.1100 1011 1010 $_2$ =

2.5 Decimal \rightarrow Hexadecimal \rightarrow Decimal Conversion

Decide for the number of fractional hex-digits, f_h , and multiply the decimal number with 16th. If desired the decimal number can then be rounded or truncated. The resulting integral number is then converted to a hex-number.

Example: We want to have $f_h=3$ hexadecimal fractional digits.

$$1234.567_{10} = 1234.567_{10} * (16^{3}*16^{-3}) = 1234.567_{10} * 16^{3} * 16^{-3} = 5\ 056\ 786.432_{10} * 16^{-3} \\ \approx 5\ 056\ 786_{10} * 16^{-3} = 4D2912_{16} * 16^{-3} = 4D2.912_{16}$$

Easier to compute might be the form separating integral and fractional parts:

$$1234.567_{10} = 1234_{10} + 0.567_{10} = 4D2_{16} + 0.567_{10} * 16^3 * 16^{-3} = 4D2_{16} + 2322.432_{10} * 16^{-3} \\ \approx 4D2_{16} + 2322_{10} * 16^{-3} = 4D2_{16} + 912_{16} * 16^{-3} = 4D2.912_{16}$$

Remember: $1234_{10} = (77*16) + 2 = ((4*16) + 13)*16 + 4 = 4*16^2 + 13*16^1 + 2*16^0 = 4D2_{16}$.

Back translation to decimal is performed by multiplying hex-digit on position m with 16^m.

Example: $4D2.912_{16} = 4*16^2 + 13*16^1 + 2*16^0 + 9*16^{-1} + 1*16^{-2} + 2*16^{-3} \approx 1234.56689$. Exercise: convert to decimal (f=3) : ABC.DEF₁₆ = Exercise: convert to hex (f=3): 2748.871₁₆ =

2.6 Real → Binary Conversion

Factors – like filter coefficients – are computed as real numbers and have to be converted to bit vectors. Let's assume the number rVal=1.234 has to be converted to a bit string with 8 binary places, 6 of them fractional. The example below shows a possible way to accomplish this.

 $\begin{aligned} rVal &= rVal \cdot (1) = rVal \cdot (2^{6} \cdot 2^{-6}) = (rVal \cdot 2^{6}) \cdot 2^{-6} = (1.234 \cdot 64) \cdot 2^{-6} = 78.976 \cdot 2^{-6} \\ iVal &= round(rVal \cdot 2^{6}) \cdot 2^{-6} = round(78.976) \cdot 2^{-6} = 79 \cdot 2^{-6} = 01001111_2 \cdot 2^{-6} = 01.001111_2. \end{aligned}$

For the negative rVal2 = -rVal = -1.234 we obtain in the same way $rVal2 = -78.976 \cdot 2-6$ and $iVal2 = round(rVal2 \cdot 2^6) \cdot 2^{-6} = round(-78.976) \cdot 2^{-6} = -79 \cdot 2^{-6} = 10110001_2 \cdot 2^{-6} = 10.110001_2$.

Positive an negative numbers are distinguished by the first bit. Be careful to not set this bit accidentally by a too large positive number. The largest positive number for a signed 8-Bit representation is $iVal_{max}=2^7-1=127$ and the largest negative number is $iVal_{min}=-2^7=-128$.

Exercises (for solutions see \rightarrow chapter 8) : Convert π =3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.

.....

.....

Convert $-\pi$ =-3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.

.....

2.7 Floating-Point Numbers

Fig. 2.7: Floating-point data structure

s	exponent	mantissa
---	----------	----------

Format	Sign	Exponent	Mantissa	Total number of bits	Exponent bias
Half	1	5	10	16	15
Single	1	8	23	32	127
Double	1	11	52	64	1023
Quad	1	15	112	128	16383

Table 2.7: IEEE 754 binary formats [1]

The floating point data structure has 1 sign bit s, e exponent bits and m mantissa bits. The number is computed from

real value = (-1)^s x 2^{exponent - exponent_bias} x mantissa

The exponent is biased by (2^{e-1}) -1 to obtain both positive and negative exponents.

If possible, the mantissa is stored normalized i.e. with one bit before the point. Example: the number 101.1101 is stored as 1.011101 \times 2⁺².

The number is said to be de-normalized if the MSB of the mantissa is 0 and its fraction $\neq 0$.

Particular situations

- ± 0 (depending on the sign bit) : exponent = 0 and mantissa = 0.
- $\pm\infty$ (depending on the sign bit) : exponent = 2^e-1 (=all ones) and mantissa fraction =0
- NaN (Not a Number) : exponent = 2^{e} -1 (=all ones) and mantissa fraction $\neq 0$

Floating point numbers are well suited for multiplication and division, as $2^A \ge 2^{A+B}$, but not for addition and subtraction, as for this operations it has be brought into a fixed-point like format. Typically, working with floating-point numbers is significantly more time consuming than working with fixed-point numbers. However, the range of floating-point numbers is significantly larger than that of fixed-point numbers.

3 Rounding and Truncation

Truncation

Truncating a number with integral part g and fractional part f (i.e. f < 1): g.f truncates to g (, regardless whether g is positive or negative): Example:5.8 truncates to 5, -5.8 truncates to -5.

Rounding Threshold

The threshold for rounding is $\frac{1}{2}$ ·LSB with LSB being the least significant bit. For integral numbers LSB=1. With Base (or radix) B = 10, 2, 16 we get $\frac{1}{2}$ B = 5, 1, 8, respectively. Consequently the numerical thresholds are $5 \cdot 10^{-1}=0.5_{10}=1 \cdot 2^{-1}=0.1_2=8 \cdot 16^{-1}=0.8_{16}$.

Rounding:

This method corresponds to the C or Matlab expression round(g.f) for decimal numbers. Positive numbers: g.f rounds to g when f < 0.5 and to g+1 when $f \ge 0.5$. Negative numbers: g.f rounds to g when f < 0.5 and to g-1 when $f \ge 0.5$.

Possible realization:

+ For numbers ≥ 0 : *rounded_number* = $g + f_1$, with f_1 being the first fractional bit. - For numbers < 0: *rounded_number* = $-(g' + f_1')$ with g' f' = -(g f).

Bit-Vector Easy Rounding Scheme:

This method corresponds to the C or Matlab expression floor(g.f+0.5) for decimal numbers.

```
Easy realization: bver_rounded_number = g + f_l with f_l being the first fractional bit.
```

Exercise:

Fill the empty fields in Table 3-1 to understand the differences between truncation, mathematical rounding and the bit-vector easy rounding presented above. The bit-strings are assumed ot be 5-bit signed numbers.

binary	binary	decimal	decimal	trun	truncated		nded	+0.1 ₂ tr	uncated
	rational	rational		bin	=dec	bin	=dec	bin	=dec
01.001	0 1001 / 2 ³	09 / 8	+1.125	01	+1	01	+1	01	+1
01.011	0 1011 / 2 ³	11 / 8	+1.375						
01.100	0 1100 / 2 ³	12 / 8	+1.500						
01.101	0 1101 / 2 ³	13 / 8	+1.625						
01.111	0 1111 / 2 ³	15 / 8	+1.875						
10.111	1 0111 / 2 ³	-09 / 8	-1.125	10	+2	11	-1	11	-1
10.101	1 0101 / 2 ³	-11 / 8	-1.375						
10.100	1 0100 / 2 ³	-12 / 8	-1.500						
10.011	1 0011 / 2 ³	-13 / 8	-1.6250						
10.001	$1\ 0001\ /\ 2^3$	-15 / 8	-1.8750						

Table 3-1: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

Check with table 3-2 when rounding and bit-vector easy rounding obtains same or different results:

binary	decimal	decimal	rounded		+0.1 ₂ tr	iden-	
	rational	fixed point	bin	=dec	bin	=dec	tical
001.01111111	+383 / 28	1.49609375	001	+1	001	+1	yes
001.10000000	+384 / 28	1.5					
001.10000001	+385 / 28	1.50390625					
110.10000001	-384 / 2 ⁸	-1.49609375	111	-1	111	-1	yes
110.10000000	-384 / 2 ⁸	-1.5					
110.01111111	$+385/2^{8}$	-1.50390625					

What is correct?: The difference between rounding and bit-vector easy rounding **increases** / **decreases** with the number of fractional bits.

Fig. 3: Matlab plot. Top down: truncation, rounding, bit-vector easy rounding, 3-level quantization. Differences between the second and third line are in -n.5 only.

4 Exercise Based on Executable VHDL

Listing 4: Code with gaps

```
LIBRARY ieee; USE ieee.std logic 1164.ALL;
(1)
   PACKAGE pk filter IS
(2)
(3)
     CONSTANT cDataInWidth:POSITIVE:=4; -- Input-Data BitWidth
(4)
     CONSTANT cDataInFract:POSITIVE:=2; -- No of Input-Data fract. Bits
(5)
     CONSTANT cDataOutWidth:POSITIVE:=5; -- Output-Data BitWidth
     CONSTANT cDataOutFract:POSITIVE:=3; -- No of Output-Data fract Bits
(6)
     CONSTANT cCoefWidth:POSITIVE:=4; -- Coefficient's BitWidth
CONSTANT cCoefFract:POSITIVE:=2; -- No of Coef's fractional Bits
(7)
(8)
     SUBTYPE t_DataIn IS std_logic_vector(cDataInWidth-1 DOWNTO 0);
SUBTYPE t_DataOut IS std_logic_vector(cDataOutWidth-1 DOWNTO 0);
SUBTYPE t_coef IS std_logic_vector(cCoefWidth-1 DOWNTO 0);
(9)
(10)
(11)
(12) END PACKAGE pk filter;
(13)
(14) LIBRARY ieee; USE ieee.std_logic_1164.ALL,
(15)
                   ieee.std logic signed."+", ieee.std logic signed."*";
(16) USE WORK.pk filter.ALL;
(17) ENTITY TestBitslice IS
(18) END ENTITY TestBitslice;
(19)
(20) ARCHITECTURE rtl TestBitslice OF TestBitslice IS
     SIGNAL DataIn :t DataIn;
(21)
(22)
     SIGNAL coef :t coef;
(23)
     SIGNAL DataOut:t DataOut;
     SIGNAL product:std logic_vector(.....
(24)
    (25)
     CONSTANT iPl:NATURAL:= .....
    (26)
     CONSTANT iPh:NATURAL:= .....
    (27) BEGIN
(28) DataIn <= "0101", "0100" AFTER 10 ns; -- 1.25,
                                                  1.00 AFTER 10 ns
    coef <= "0101";
(29)
                                        -- 1.25
(30)
    product <= coef * DataIn;
                                        -- 1.5625, 1.25 AFTER 10 ns
(31)
     DataOut <= product(iPh DOWNTO iPl) .....</pre>
                               (32) END ARCHITECTURE rtl TestBitslice;
```

Correspondences with chapter 2.3: fc=cCoefFract, fd=cDataInFract, fy=cDataOutFract, wc, wd, wp, wy: cCoefWidth, cDataInWidth, cProdWidth, cDataOutWidth, respectively.

Exercises:

- Complete line (24) to get a *product* signal that fits to the multiplication of line (30).
- Compute *iPl* und *iPh* in lines (25), (26) to fit the bit-slice operation of line (31).
- Extend line (31) to get the bit-slice by bit-vector easy rounding.
- ▶ Verify the product, bit-slice and rounding operation of lines (39), (49) by hand.

5 Summary

Binary, decimal and hexadecimal coding were presented as well as conversion techniques between them, particularly when these number representations appearing fixed-point formats. After a short glance on floating-point numbers rounding was considered and an easy way to round bit vectors was presented. The tutorial finished with an example based on VHDL.

6 References

[1] IEEE standard 754, available: http://www.ieee.org/publications_standards/publications/subscriptions/prod/standards_overview.html.

[2] Available: <u>http://de.wikipedia.org</u> -> fixed-point

7 Appendix: Solutions to the Exercises

7.1 Introduction

7.2 Number Representations

7.2.1 Integral Numbers

7.2.2 Fixed Point Numerical Representation: The Q Number Format

Exercise: The bit string 110.1011 can be interpreted... ... as UQ3.4 format representing $1101011*2^{-4} = 107/16 = 6.6875$... as Q2.4 delivering $-(0010100+1)*2^{-4} = -(0010101)*2^{-4} = -21/16 = -1.3125$.

7.2.3 Multiplication of Fixed-Point Numbers

Exercises (for solutions see \rightarrow chapter 8) :

Let **coef** have w_c binary places, f_c of them fractional. Signal **data** has w_d binary places, f_d of them fractional. The product has

$$\begin{split} \mathbf{w}_p &= \dots \mathbf{w}_c + \mathbf{w}_d \dots \text{ binary places, } \mathbf{f}_p &= \dots \mathbf{f}_c + \mathbf{f}_d \dots \text{ of them fractional.} \\ \text{Fig. 2.3 illustrates the multiplication of the coefficient coef with } \mathbf{w}_c &= \dots 7 \dots, \mathbf{f}_c &= \dots 4 \dots \\ \text{and the data sample data with } \mathbf{w}_d &= \dots 5 \dots, \quad \mathbf{f}_d &= \dots 3 \dots \text{ The product prod has} \\ \mathbf{w}_p &= \dots \mathbf{w}_c + \mathbf{w}_d \dots = 7 + 5 = 12 \dots \dots \text{ binary places, } \\ \mathbf{f}_p &= \dots \mathbf{f}_c + \mathbf{f}_d = 4 + 3 = 7 \dots \dots \text{ of them fractional.} \\ \text{We want to take } \mathbf{y} \text{ out of prod preserving the point. For all bit vectors the LSB has index 0.} \\ \text{In Fig. 2.3 } \mathbf{y} \text{ has } \mathbf{w}_y &= \dots 7 \dots \text{ binary places } \mathbf{f}_y &= \dots 5 \dots \text{ of them fractional.} \\ \text{To apply the VHDL command } \mathbf{y} <= \mathbf{prod(iph DOWNTO ipl)} \text{ we have to compute } \\ \mathbf{i}_{pl} &= \dots \mathbf{i}_{p1} + \mathbf{w}_y - 1 = 2 + 7 - 1 = 8 \dots \dots \dots \\ \end{split}$$

7.2.4 Binary to Hexadecimal to Binary Conversion

Exercise: convert to binary: $ABC.DEF_{16} = 1010 \ 1011 \ 1100 \ . \ 1101 \ 1110 \ 1111_2.$ Exercise: convert to hex:

1111 1110 1101.1100 1011 1010₂ = FED.CBA₁₆

7.2.5 Decimal to Hexadecimal to Decimal Conversion

Exercise: convert to decimal (f=3): ABC.DEF₁₆ =2748.8708496..... Exercise: convert to hex (f=3): 2748.871₁₆ = ...ABC + 0.871·16⁻³ = = ABC + 3566.79 \approx = ABC + 3567·16⁻³ = ABC + DEF·16⁻³ = ABC.DEF

7.2.6 Real-to-Binary Conversion

Exercises (for solutions see \rightarrow chapter 8) :

Convert π =3.14159 into a signed bit vector with 8 binary places, 4 of them fractional. 3.14159 · (2⁴ · 2⁻⁴) = (3.14159·16) · 2⁻⁴ = 50.26... · 2⁻⁴ => 50 · 2⁻⁴ 50₁₀ · 2⁻⁴ = 00110010₂ · 2⁻⁴ = 0011.0010₂

Convert $-\pi$ =-3.14159 into a signed bit vector with 8 binary places, 4 of them fractional. -3.14159 · (2⁴ · 2⁻⁴) = (-3.14159·16) · 2⁻⁴ = -50.26... · 2⁻⁴ => -50 · 2⁻⁴ (-50₁₀) · 2⁻⁴ = ((~0011.0010₂)+1) · 2⁻⁴ = 11001110₂ · 2⁻⁴ = 1100.1110₂

7.3 Rounding and Truncation

Table 3-1: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary	bin rat.	dec. rat.	decimal	trun	truncated		nded	+0.1 ₂ truncated	
				bin	=dec	bin	=dec	bin	=dec
01.001	0 1001 / 2 ³	09 / 8	+1.125	01	+1	01	+1	01	+1
01.011	0 1011 / 2 ³	11 / 8	+1.375	01	+1	01	+1	01	+1
01.100	0 1100 / 2 ³	12 / 8	+1.500	01	+1	10	+2	10	+2
01.101	0 1101 / 2 ³	13 / 8	+1.625	01	+1	10	+2	10	+2
01.111	0 1111 / 2 ³	15 / 8	+1.875	01	+1	10	+2	10	+2
10.111	1 0111 / 2 ³	-09 / 8	-1.125	10	+2	11	-1	11	-1
10.101	1 0101 / 2 ³	-11 / 8	-1.375	10	+2	01	-1	11	-1
10.100	1 0100 / 2 ³	-12 / 8	-1.500	10	-2	10	-2	11	-1
10.011	1 0011 / 2 ³	-13 / 8	-1.6250	10	-2	-2	-2	10	-2
10.001	$1\ 0001\ /\ 2^3$	-15 / 8	-1.8750	10	-2	-2	-2	10	-2

Table 3-2: Truncation, round	ling and bit-vector easy rour	nding: (complete empty fields):
------------------------------	-------------------------------	---------------------------------

binary	decimal	decimal	roui	nded	+0.1 ₂ tr	iden-	
	rational	fixed point	bin	=dec	bin	=dec	tical
001.01111111	+383 / 28	1.49609375	001	+1	001	+1	yes
001.10000000	+384 / 28	1.5	010	+2	010	+2	yes
001.10000001	+385 / 28	1.50390625	010 +2		010	+2	yes
110.10000001	-384 / 2 ⁸	-1.49609375	111	-1	111	-1	yes
110.10000000	-384 / 2 ⁸	-1.5	110	-2	111	-1	no
110.01111111	+385 / 28	-1.50390625	110	-2 110		-2	yes

Correct: The difference between rounding and bit-vector easy rounding **decreases** with the number of fractional bits.

7.4 Exercise Based on Executable VHDL

Solutions:

```
(24) SIGNAL product:std_logic_vector(cDataInWidth+cCoefWidth-1 DOWNTO 0);
(25) CONSTANT iP1:NATURAL:=cCoefFract+cDataInFract-cDataOutFract;
(26) CONSTANT iPh:NATURAL:=iP1+cDataOutWidth-1;
(31) DataOut <= product(iPh DOWNTO iP1) + product(iP1-1);</pre>
```

Verification of product and rounding by hand:

Factors:

DataIn = "01.01" , "01.00" AFTER 10 ns; -- = $1.5625 \rightarrow 1.25$ coef = "01.01"; -- = 1.5

No rounding:

```
product = "0001.1001", "0001.0100" AFTER 10 ns; -- = 1.5625 \rightarrow 1.25
DataOut = "01.100", " 01.010" AFTER 10 ns; -- = 1.5 \rightarrow 1.25
```

With bit-vector easy rounding:

product =	"0001.1001",	"0001	.0100"	AFTER	10	ns;	 =	1.5625	\rightarrow	1.25
DataOut =	"01.101" ,	" 01	010"	AFTER	10	ns;	 =	1.625	\rightarrow	1.25