
lektronik
abor

Using Fixed-Point Numbers

Prof. Dr. Martin J. W. Schubert

Electronics Laboratory

Regensburg University of Applied Sciences

Regensburg

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 2 -

Abstract. This tutorial is intended to detail the use of integer and
fixed point numbers when processing data samples with micro
controllers or FPGAs.

1 Introduction
Using integers as fixed point numbers is an essential skill for micro controller and FPGA
programming, particularly when digital signal processing (DSP) and A/D - D/A conversion
are taken into account.

The organization of this document is as follows:

Chapter 1 introduction,

Chapter 2 introduces different number representations and conversion algorithms between
them,

Chapter 3 discusses rounding techniques,

Chapter 4 offers an exercise,

Chapter 5 summarizes the tutorial,

Chapter 6 gives some references and

Chapter 7 the solutions to the exercises.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 3 -

2 Number Representations (See chapter 6.2 for solutions.)
2.1 Integral Numbers

There are two ways to interpret a bit vector as integral number: unsigned and signed,
corresponding to the IEEE VHDL libraries std_logic_unsigned and std_logic_signed, resp.

 Unsigned interpretation: A bit vector of w bits represents the integer range 0 ... 2w – 1.

 Signed interpretation: A bit vector of w bits represents the int. range –2w–1 ... +2w–1 – 1.

2.2 Fixed Point Numerical Representation: The Q Number Format

Unsigned: UQg.f with g integral (deutsch: ganze) and f fractional bits. Width w=g+f.
Signed: Qg.f with 1 sign bit plus g integral and f fraction bits. Width w=1+g+f.

Example: 101.1001 can be interpreted as UQ3.4 format representing 1011001*2-4 = 89/16 =
5.5625 or as Q2.4 delivering –(0100110+1) *2-4 = –(0100111) *2-4 = -39/16 = -2.4375.

Exercise: The bit string 110.1011 can be interpreted...

... as UQ3.4 format representing

..

... as Q2.4 delivering

..

Unsigned: Range: 0 ≤ AU ≤
f

fg

2

12 

, Resolution: r = 2-f =
f2

1
.

Singed Range:
f

fg

2

2 

 ≤ AS ≤
f

fg

2

12 

 , Resolution: r = 2-f =
f2

1
.

 You can append an arbitrary number of zeros after the point.
 You can precede an arbitrary number of zeros before an unsigned number.
 You can precede an arbitrary multiple of the sign bit before a signed number.

Summation an subtraction of fixed-point numbers is easy as they can be treated like integer
numbers when they are written such that the points are over each other. Example:

Given numbers Unsigned treatment Signed treatment
 11011011.11011
 101.11101101

 11011011.11011000
 00000101.11101101

 11011011.11011000
 11111101.11101101

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 4 -

Table 2.2: Q-formats (as typical for micro controllers), w: total number of bits, r: resolution

Format w g f min max r (resolution)
UQ16 16 16 0 0 2^16 - r 1
UQ.16 16 0 16 0 1 - r 2^-16
Q15 16 15 0 -2^15 2^15 - r 1
Q.15 16 0 15 -1 1 – r 2^-15
UQ16.16 32 16 16 0 2^16 - r 2^-16
Q15.16 32 15 16 -2^15 2^15 - r 2^-16

Caution: Sometimes you will find the so-called Qf-Format with Q15 meaning Qg.15, g=?.
Then we know about 1 sign bit and 15 fractional bits but an unknown number of integral bits.
This causes uncertainty! Avoid it, even in a C program with all integers having 32 bits
(because there also exist short int (16 bits) and char (8 bits) types in C).

 You cannot mark the Q-format within the bit string. It’s a predefined arrangement of your

design.

2.3 Multiplication of Fixed-Point Numbers

Fig. 2.3:
Reducing the product length
to the length of its factors
with indices iph and ipl.

coef

data

prod

0wc-1

wp-1 0iph

wd-1 0

wy-1

ipl

0

y

We compute prod = coef * data with coef and data having wc and wd binary places,
respectively, fc and fd of them fractional. Then prod has wp=wc+wd binary places, fp=fc+fd
of them fractional.

Mathematical proof: We can write coef = icoef∙2-fc and data = idata∙2-fd with ixxx integral.
Consequently, the product can be written as
prod = coef ∙ data = icoef∙2-fc ∙ idata∙2-fd = icoef∙ idata∙2-(fc+fd).

Reducing the length of products:

Proof: We want to reduce the width of prod by taking result vector y out of it. Result y has wy
bits in formatted as [U]Qgy.fy.

Considering fractional bits only:
The fractional part of product prod consists of bits fp-1...0.
The fractional part of result y will consist of bits fy-1...0.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 5 -

Preserving the point we get y(fy-1 : 0) = p(fp-1 : fp-fy) with lowest index ipl = fp-fy.

Considering integral bits also:
As y = y(wy-1 : 0) its max. index is wy–1 larger than its min. index: iph = ipl + (wy-1).

Consequently (formula to be used in exercise chapter 4):

y = prod(iph : ipl) with ipl = fp-fy, iph = ipl + wy-1

Exercises (for solutions see → chapter 6) :

Let coef have wc binary places, fc of them fractional. Signal data has wd binary places, fd
of them fractional. The product has

wp = binary places, fp = of them fractional.

Fig. 2.3 illustrates the multiplication of the coefficient coef with wc =, fc =

and the data sample data with wd =, fd = The product prod has

wp = ... binary places,

fp = .. of them fractional.

We want to take result vector y out of prod preserving the point. For all bit vectors the LSB
has index 0.

In Fig. 2.3 y has wy =, binary places fy = of them fractional.

To apply the VHDL command y<=prod(iph DOWNTO ipl) we have to compute

ipl = ..

iph = ..

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 6 -

2.4 Binary  Hexadecimal  Binary Conversion

Table 2.4: Mapping decimal, hexadecimal and binary numbers

Decimal
number

Hexadecimal
Digit

Bit vector Decimal
number

Hexadecimal
Digit

Bit
vector

0 0 0000 8 8 1000
1 1 0001 9 9 1001
2 2 0010 10 A 1010
3 3 0011 11 B 1011
4 4 0100 12 C 1100
5 5 0101 13 D 1101
6 6 0110 14 E 1110
7 7 0111 15 F 1111

Hexadecimal numbers are easier to read and remember than bit vectors. Starting from the
point bits are subdivided into packages of 4 bits and replaced by equivalent hex-digits.

Example: 10100101101.0110101101012 = 101 0010 1101 . 0110 1011 01012 = 52D.6B516.

Convert the hex-number back to a bit vector translating every hex-digit to a 4-bit string.

Example: = 52D.6B516 => 101 0010 1101 . 0110 1011 01012.

Exercise: convert to binary:

ABC.DEF16 = .
 ...

Exercise: convert to hex:

1111 1110 1101.1100 1011 10102 =

2.5 Decimal  Hexadecimal  Decimal Conversion

Decide for the number of fractional hex-digits, fh, and multiply the decimal number with 16fh.
If desired the decimal number can then be rounded or truncated. The resulting integral
number is then converted to a hex-number.

Example: We want to have fh=3 hexadecimal fractional digits.

1234.56710 = 1234.56710 * (163*16-3) = 1234.56710 * 163 * 16-3 = 5 056 786.43210 * 16-3

 ≈ 5 056 78610 * 16-3 = 4D291216 * 16-3 = 4D2.91216

Easier to compute might be the form separating integral and fractional parts:

1234.56710 =123410 + 0.56710 = 4D216 + 0.56710* 163 * 16-3 = 4D216 + 2322.43210 * 16-3

 ≈ 4D216 + 232210 * 16-3 = 4D216 + 91216 * 16-3 = 4D2.91216

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 7 -

Remember: 123410 = (77*16) + 2 = ((4*16) + 13)*16 + 4 = 4*162 + 13*161 + 2*160 = 4D216.

Back translation to decimal is performed by multiplying hex-digit on position m with 16m.

Example: 4D2.91216 = 4*162 +13*161 + 2*160 + 9*16-1+ 1*16-2+ 2*16-3 ≈ 1234.56689.

Exercise: convert to decimal (f=3) : ABC.DEF16 =

Exercise: convert to hex (f=3): 2748.87116 =

..

2.6 Real  Binary Conversion

Factors – like filter coefficients – are computed as real numbers and have to be converted to
bit vectors. Let’s assume the number rVal=1.234 has to be converted to a bit string with 8
binary places, 6 of them fractional. The example below shows a possible way to accomplish
this.

rVal = rVal ꞏ (1) = rVal ꞏ (26 ꞏ 2-6) = (rVal ꞏ 26) ꞏ 2-6 = (1.234 ꞏ 64) ꞏ 2-6 = 78.976 ꞏ 2-6
iVal = round(rValꞏ26) ꞏ 2-6 = round(78.976) ꞏ 2-6 = 79 ꞏ 2-6 = 010011112 ꞏ 2-6 = 01.0011112.

For the negative rVal2 = -rVal = -1.234 we obtain in the same way rVal2 = -78.976 ꞏ 2-6 and
iVal2 = round(rVal2ꞏ26) ꞏ 2-6 = round(-78.976) ꞏ 2-6 = -79 ꞏ 2-6 = 101100012 ꞏ 2-6 =
10.1100012.

Positive an negative numbers are distinguished by the first bit. Be careful to not set this bit
accidentally by a too large positive number. The largest positive number for a signed 8-Bit
representation is iValmax=27–1=127 and the largest negative number is iValmin=–27=–128.

Exercises (for solutions see → chapter 8) :
Convert π=3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.

..

..

Convert -π=-3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.

..

..

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 8 -

2.7 Floating-Point Numbers

Fig. 2.7: Floating-point data structure s exponent mantissa

Table 2.7: IEEE 754 binary formats [1]

Format Sign Exponent Mantissa Total number of bits Exponent bias
Half 1 5 10 16 15
Single 1 8 23 32 127
Double 1 11 52 64 1023
Quad 1 15 112 128 16383

The floating point data structure has 1 sign bit s, e exponent bits and m mantissa bits. The
number is computed from

real_value = (-1)s x 2exponent – exponent_bias x mantissa

The exponent is biased by (2e-1)-1 to obtain both positive and negative exponents.

If possible, the mantissa is stored normalized i.e. with one bit before the point. Example: the
number 101.1101 is stored as 1.011101 x 2+2.

The number is said to be de-normalized if the MSB of the mantissa is 0 and its fraction 0.

Particular situations
 ±0 (depending on the sign bit) : exponent = 0 and mantissa = 0.
 ± (depending on the sign bit) : exponent = 2e-1 (=all ones) and mantissa fraction =0
 NaN (Not a Number) : exponent = 2e-1 (=all ones) and mantissa fraction 0

Floating point numbers are well suited for multiplication and division, as 2A x 2B = 2A+B, but
not for addition and subtraction, as for this operations it has be brought into a fixed-point like
format. Typically, working with floating-point numbers is significantly more time consuming
than working with fixed-point numbers. However, the range of floating-point numbers is
significantly larger than that of fixed-point numbers.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 9 -

3 Rounding and Truncation
Truncation
Truncating a number with integral part g and fractional part f (i.e. f<1):
g.f truncates to g (, regardless whether g is positive or negative):
Example:5.8 truncates to 5, -5.8 truncates to –5.

Rounding Threshold
The threshold for rounding is ½LSB with LSB being the least significant bit. For integral
numbers LSB=1. With Base (or radix) B = 10, 2, 16 we get ½ B = 5, 1, 8, respectively.
Consequently the numerical thresholds are 510-1=0.510 = 12-1=0.12 = 816-1=0.816.

Rounding:
This method corresponds to the C or Matlab expression round(g.f) for decimal numbers.
Positive numbers: g.f rounds to g when f < 0.5 and to g+1 when f  0.5.
Negative numbers: g.f rounds to g when f < 0.5 and to g-1 when f  0.5.

Possible realization:
+ For numbers ≥ 0 : rounded_number = g + f1 , with f1 being the first fractional bit.
- For numbers < 0 : rounded_number = -(g' + f1') with g'.f ' = -(g.f).

Bit-Vector Easy Rounding Scheme:
This method corresponds to the C or Matlab expression floor(g.f+0.5) for decimal numbers.

Easy realization: bver_rounded_number = g + f1 with f1 being the first fractional bit.

Exercise:
Fill the empty fields in Table 3-1 to understand the differences between truncation,
mathematical rounding and the bit-vector easy rounding presented above. The bit-strings are
assumed ot be 5-bit signed numbers.

Table 3-1: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary binary decimal decimal truncated rounded +0.12 truncated
 rational rational bin =dec bin =dec bin =dec

01.001 0 1001 / 23 09 / 8 +1.125 01 +1 01 +1 01 +1
01.011 0 1011 / 23 11 / 8 +1.375
01.100 0 1100 / 23 12 / 8 +1.500
01.101 0 1101 / 23 13 / 8 +1.625
01.111 0 1111 / 23 15 / 8 +1.875

10.111 1 0111 / 23 -09 / 8 -1.125 10 +2 11 -1 11 -1
10.101 1 0101 / 23 -11 / 8 -1.375
10.100 1 0100 / 23 -12 / 8 -1.500
10.011 1 0011 / 23 -13 / 8 -1.6250
10.001 1 0001 / 23 -15 / 8 -1.8750

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 10 -

Check with table 3-2 when rounding and bit-vector easy rounding obtains same or different
results:

Table 3-2: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary decimal decimal rounded +0.12 truncated iden-
 rational fixed point bin =dec bin =dec tical

001.01111111 +383 / 28 1.49609375 001 +1 001 +1 yes
001.10000000 +384 / 28 1.5
001.10000001 +385 / 28 1.50390625

110.10000001 -384 / 28 -1.49609375 111 -1 111 -1 yes
110.10000000 -384 / 28 -1.5
110.01111111 +385 / 28 -1.50390625

What is correct?: The difference between rounding and bit-vector easy rounding increases /
decreases with the number of fractional bits.

Fig. 3: Matlab plot. Top down: truncation, rounding, bit-vector easy rounding, 3-level
quantization. Differences between the second and third line are in -n.5 only.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 11 -

4 Exercise Based on Executable VHDL
Listing 4: Code with gaps

(1) LIBRARY ieee; USE ieee.std_logic_1164.ALL;
(2) PACKAGE pk_filter IS
(3) CONSTANT cDataInWidth:POSITIVE:=4; -- Input-Data BitWidth
(4) CONSTANT cDataInFract:POSITIVE:=2; -- No of Input-Data fract. Bits
(5) CONSTANT cDataOutWidth:POSITIVE:=5; -- Output-Data BitWidth
(6) CONSTANT cDataOutFract:POSITIVE:=3; -- No of Output-Data fract Bits
(7) CONSTANT cCoefWidth:POSITIVE:=4; -- Coefficient's BitWidth
(8) CONSTANT cCoefFract:POSITIVE:=2; -- No of Coef's fractional Bits
(9) SUBTYPE t_DataIn IS std_logic_vector(cDataInWidth-1 DOWNTO 0);
(10) SUBTYPE t_DataOut IS std_logic_vector(cDataOutWidth-1 DOWNTO 0);
(11) SUBTYPE t_coef IS std_logic_vector(cCoefWidth-1 DOWNTO 0);
(12) END PACKAGE pk_filter;
(13)
(14) LIBRARY ieee; USE ieee.std_logic_1164.ALL,
(15) ieee.std_logic_signed."+", ieee.std_logic_signed."*";
(16) USE WORK.pk_filter.ALL;
(17) ENTITY TestBitslice IS
(18) END ENTITY TestBitslice;
(19)
(20) ARCHITECTURE rtl_TestBitslice OF TestBitslice IS
(21) SIGNAL DataIn :t_DataIn;
(22) SIGNAL coef :t_coef;
(23) SIGNAL DataOut:t_DataOut;

(24) SIGNAL product:std_logic_vector(...................................

...

(25) CONSTANT iPl:NATURAL:= ..

...

(26) CONSTANT iPh:NATURAL:= ..

...

(27) BEGIN
(28) DataIn <= "0101", "0100" AFTER 10 ns; -- 1.25, 1.00 AFTER 10 ns
(29) coef <= "0101"; -- 1.25
(30) product <= coef * DataIn; -- 1.5625, 1.25 AFTER 10 ns

(31) DataOut <= product(iPh DOWNTO iPl)

...

(32) END ARCHITECTURE rtl_TestBitslice;

Correspondences with chapter 2.3: fc=cCoefFract, fd=cDataInFract, fy=cDataOutFract,
wc, wd, wp, wy: cCoefWidth, cDataInWidth, cProdWidht, cDataOutWidth, respectively.

Exercises:
 Complete line (24) to get a product signal that fits to the multiplication of line (30).
 Compute iPl und iPh in lines (25), (26) to fit the bit-slice operation of line (31).
 Extend line (31) to get the bit-slice by bit-vector easy rounding.
 Verify the product, bit-slice and rounding operation of lines (39), (49) by hand.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 12 -

5 Summary
Binary, decimal and hexadecimal coding were presented as well as conversion techniques
between them, particularly when these number representations appearing fixed-point formats.
After a short glance on floating-point numbers rounding was considered and an easy way to
round bit vectors was presented. The tutorial finished with an example based on VHDL.

6 References
[1] IEEE standard 754, available: http://www.ieee.org/publications_standards/publications/subscriptions/prod/standards_overview.html.
[2] Available: http://de.wikipedia.org -> fixed-point

7 Appendix: Solutions to the Exercises
7.1 Introduction

7.2 Number Representations

7.2.1 Integral Numbers

7.2.2 Fixed Point Numerical Representation: The Q Number Format

Exercise: The bit string 110.1011 can be interpreted...
... as UQ3.4 format representing
1101011*2-4 = 107/16 = 6.6875
... as Q2.4 delivering
–(0010100+1)*2-4 = –(0010101)*2-4 = -21/16 = -1.3125.

7.2.3 Multiplication of Fixed-Point Numbers

Exercises (for solutions see → chapter 8) :
Let coef have wc binary places, fc of them fractional. Signal data has wd binary places, fd
of them fractional. The product has
wp =wc + wd..... binary places, fp =fc + fd.....of them fractional.
Fig. 2.3 illustrates the multiplication of the coefficient coef with wc = ..7..., fc = ..4..
and the data sample data with wd = ...5..., fd = ...3.... The product prod has
wp = ... wc + wd.= 7 + 5 = 12 binary places,
fp = .. fc + fd = 4 + 3 = 7 of them fractional.
We want to take y out of prod preserving the point. For all bit vectors the LSB has index 0.
In Fig. 2.3 y has wy = ...7..., binary places fy = ...5... of them fractional.
To apply the VHDL command y<=prod(iph DOWNTO ipl) we have to compute
ipl = ... fp – wy = 7 - 5 = 2
iph = ... ipl + wy –1 = 2 + 7 – 1 = 8

7.2.4 Binary to Hexadecimal to Binary Conversion

Exercise: convert to binary:
ABC.DEF16 = 1010 1011 1100 . 1101 1110 11112.
Exercise: convert to hex:

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 13 -

1111 1110 1101.1100 1011 10102 = FED.CBA16

7.2.5 Decimal to Hexadecimal to Decimal Conversion

Exercise: convert to decimal (f=3) : ABC.DEF16 =2748.8708496......
Exercise: convert to hex (f=3): 2748.87116 = ...ABC + 0.87116-3 =
= ABC + 3566.79 ≈ = ABC + 356716-3 = ABC + DEF16-3 = ABC.DEF

7.2.6 Real-to-Binary Conversion

Exercises (for solutions see → chapter 8) :
Convert π=3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.
3.14159  (24  2-4) = (3.1415916)  2-4 = 50.26...  2-4 => 50  2-4
5010  2-4 = 001100102  2-4 = 0011.00102

Convert -π=-3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.
-3.14159  (24  2-4) = (-3.1415916)  2-4 = -50.26...  2-4 => -50  2-4
(-5010)  2-4 = ((~0011.00102)+1)  2-4 = 110011102  2-4 = 1100.11102

7.3 Rounding and Truncation
Table 3-1: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary bin rat. dec. rat. decimal truncated rounded +0.12 truncated
 bin =dec bin =dec bin =dec

01.001 0 1001 / 23 09 / 8 +1.125 01 +1 01 +1 01 +1
01.011 0 1011 / 23 11 / 8 +1.375 01 +1 01 +1 01 +1
01.100 0 1100 / 23 12 / 8 +1.500 01 +1 10 +2 10 +2
01.101 0 1101 / 23 13 / 8 +1.625 01 +1 10 +2 10 +2
01.111 0 1111 / 23 15 / 8 +1.875 01 +1 10 +2 10 +2

10.111 1 0111 / 23 -09 / 8 -1.125 10 +2 11 -1 11 -1
10.101 1 0101 / 23 -11 / 8 -1.375 10 +2 01 -1 11 -1
10.100 1 0100 / 23 -12 / 8 -1.500 10 -2 10 -2 11 -1
10.011 1 0011 / 23 -13 / 8 -1.6250 10 -2 -2 -2 10 -2
10.001 1 0001 / 23 -15 / 8 -1.8750 10 -2 -2 -2 10 -2

Table 3-2: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary decimal decimal rounded +0.12 truncated iden-
 rational fixed point bin =dec bin =dec tical

001.01111111 +383 / 28 1.49609375 001 +1 001 +1 yes
001.10000000 +384 / 28 1.5 010 +2 010 +2 yes
001.10000001 +385 / 28 1.50390625 010 +2 010 +2 yes

110.10000001 -384 / 28 -1.49609375 111 -1 111 -1 yes
110.10000000 -384 / 28 -1.5 110 -2 111 -1 no
110.01111111 +385 / 28 -1.50390625 110 -2 110 -2 yes

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 14 -

Correct: The difference between rounding and bit-vector easy rounding decreases with the
number of fractional bits.

7.4 Exercise Based on Executable VHDL
Solutions:
(24) SIGNAL product:std_logic_vector(cDataInWidth+cCoefWidth-1 DOWNTO 0);
(25) CONSTANT iPl:NATURAL:=cCoefFract+cDataInFract-cDataOutFract;
(26) CONSTANT iPh:NATURAL:=iPl+cDataOutWidth-1;
(31) DataOut <= product(iPh DOWNTO iPl) + product(iPl-1);

Verification of product and rounding by hand:

Factors:
DataIn = "01.01" , "01.00" AFTER 10 ns; -- = 1.5625  1.25
coef = "01.01"; -- = 1.5

No rounding:
product = "0001.1001", "0001.0100" AFTER 10 ns; -- = 1.5625  1.25
DataOut = "01.100" , " 01.010" AFTER 10 ns; -- = 1.5  1.25

With bit-vector easy rounding:
product = "0001.1001", "0001.0100" AFTER 10 ns; -- = 1.5625  1.25
DataOut = "01.101" , " 01.010" AFTER 10 ns; -- = 1.625  1.25

