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Abstract. This tutorial is intended to detail the use of integer and
fixed point numbers when processing data samples with micro
controllers or FPGAs.

1 Introduction

Using integers as fixed point numbers is an essential skill for micro controller and FPGA
programming, particularly when digital signal processing (DSP) and A/D - D/A conversion
are taken into account.

The organization of this document is as follows:

Chapter 1 introduction,

Chapter 2 introduces different number representations and conversion algorithms between
them,

Chapter 3 discusses rounding techniques,
Chapter 4 offers an exercise,

Chapter 5 summarizes the tutorial,
Chapter 6 gives some references and

Chapter 7 the solutions to the exercises.
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2 Number Representations (See chapter 6.2 for solutions.)
2.1 Integral Numbers

There are two ways to interpret a bit vector as integral number: unsigned and signed,
corresponding to the /JEEE VHDL libraries std logic _unsigned and std _logic signed, resp.

e Unsigned interpretation: A bit vector of w bits represents the integer range 0...2" —1.

e Signed interpretation: A bit vector of w bits represents the int. range —2"!..+2"1-1,

2.2 Fixed Point Numerical Representation: The Q Number Format

Unsigned: UQg.f with g integral (deutsch: ganze) and f fractional bits. Width w=g+f.
Signed:  Qg.f with 1 sign bit plus g integral and f fraction bits. Width w=1/+g+f.

Example: 101.1001 can be interpreted as UQ3.4 format representing 1011001*2** = 89/16 =
5.5625 or as Q2.4 delivering <(0100110+1) *24 = —0100111) *2* =-39/16 = -2.4375.

Exercise: The bit string 110.1011 can be interpreted...

... as UQ3.4 format representing

... as Q2.4 delivering
28 ] 1
Unsigned: Range: 0 <4< ———, Resolution: r=2T= — .
2/ 2/
28/ 28 1
Singed Range: — <As< —, Resolution: r=2T= — |
27 27 2/

»  You can append an arbitrary number of zeros after the point.
»  You can precede an arbitrary number of zeros before an unsigned number.
»  You can precede an arbitrary multiple of the sign bit before a signed number.

Summation an subtraction of fixed-point numbers is easy as they can be treated like integer
numbers when they are written such that the points are over each other. Example:

Given numbers Unsigned treatment Signed treatment
11011011.11011 11011011.11011000 11011011.11011000
+ 101.11101101 |+ 00000101.11101101 |+ 11111101.11101101
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Table 2.2: Q-formats (as typical for micro controllers), w: total number of bits, r: resolution

Format w g f min max r (resolution)
UuQ1e6 16 16 0 0 276 -1 1
UQ.16 16 0 16 0 l-r 27-16
Q15 16 15 0 =215 275 -1 1

Q.15 16 0 15 -1 l-r 27-15
UQ16.16 32 16 16 0 276 -1 27-16
Q15.16 32 15 16 -2715 275 -r 27-16

Caution: Sometimes you will find the so-called Qf-Format with Q15 meaning Qg.15, g=?.
Then we know about 1 sign bit and 15 fractional bits but an unknown number of integral bits.
This causes uncertainty! Avoid it, even in a C program with all integers having 32 bits
(because there also exist short int (16 bits) and char (8 bits) types in C).

» You cannot mark the Q-format within the bit string. It’s a predefined arrangement of your
design.

2.3 Multiplication of Fixed-Point Numbers

Fig. 2.3:

we-1 0
Wp-1 iph ip| 0
Reducing the product length coef S ! 1 ! !
®—  prod [TITTITTITTT]
/
Wd-1 0

data

to the length of its fact
with indices s and s, W

wy-1 0

We compute prod = coef * data with coef and data having wc and wq binary places,
respectively, fc and fq of them fractional. Then prod has wy=wc+wq binary places, fp=fc+fq
of them fractional.

Mathematical proof: We can write coef = icoef-27f¢ and data = idata-2-%¢ with ixxx integral.
Consequently, the product can be written as
prod = coef - data = icoef-27f¢ - idata-2f = icoef- idata-2-(fctfd)

Reducing the length of products:

Proof: We want to reduce the width of prod by taking result vector y out of it. Result y has wy
bits in formatted as [U]Qgy.fy.

Considering fractional bits only:
The fractional part of product prod consists of bits fp-1...0.
The fractional part of result y will consist of bits fy-1...0.
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Preserving the point we get y(fy-1 : 0) = p(fp-1 : fp-fy) with lowest index ip1 = f-fy.

Considering integral bits also:
As y =y(wy-1: 0) its max. index is wy—1 larger than its min. index: ipn = ip1 + (Wy-1).

Consequently (formula to be used in exercise chapter 4):

v = prod(ipn : ip) Wwith ip=fo-fy, iph = ipi + Wy-1

Exercises (for solutions see — chapter 6) :

Let coef have we binary places, fc of them fractional. Signal data has wq binary places, fa
of them fractional. The product has

Wp = e et e e e binary places, fp=............... of them fractional.
Fig. 2.3 illustrates the multiplication of the coefficient coef withwe= ... ... M=ot
and the data sample data withwg=....... , fa=........ The product prod has
T o et e e e e e e e e e e binary places,
f = e e e e of them fractional.

We want to take result vector y out of prod preserving the point. For all bit vectors the LSB
has index 0.
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2.4 Binary —» Hexadecimal — Binary Conversion

Table 2.4: Mapping decimal, hexadecimal and binary numbers

Decimal | Hexadecimal | Bit vector Decimal | Hexadecimal Bit

number Digit number Digit vector
0 0 0000 8 8 1000
1 1 0001 9 9 1001
2 2 0010 10 A 1010
3 3 0011 11 B 1011
4 4 0100 12 C 1100
5 5 0101 13 D 1101
6 6 0110 14 E 1110
7 7 0111 15 F 1111

Hexadecimal numbers are easier to read and remember than bit vectors. Starting from the
point bits are subdivided into packages of 4 bits and replaced by equivalent hex-digits.

Example: 10100101101.0110101101012=101 0010 1101.0110 1011 01012 =52D.6B51s.
Convert the hex-number back to a bit vector translating every hex-digit to a 4-bit string.
Example: = 52D.6B516 => 101 0010 1101.0110 1011 0101-.

Exercise: convert to binary:

ABC.DEF16 = .

Exercise: convert to hex:

1111 1110 1101.1100 1011 1010

2.5 Decimal - Hexadecimal — Decimal Conversion

Decide for the number of fractional hex-digits, fa, and multiply the decimal number with 16™.
If desired the decimal number can then be rounded or truncated. The resulting integral
number is then converted to a hex-number.

Example: We want to have f;=3 hexadecimal fractional digits.
1234.56710 = 1234.56710 * (16°*167%) = 1234.56710 * 16* * 16 = 5 056 786.43210 * 167
=~ 5056 78610 * 16> = 4D291216 * 16 = 4D2.91216

Easier to compute might be the form separating integral and fractional parts:
1234.56710  =123410+ 0.56710 = 4D216 + 0.56710* 16> * 167 = 4D216 + 2322.43210 * 16
=~ 4D216 + 232210 * 162 = 4D216 + 91216 * 167 =4D2.91216
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Remember: 123410 = (77*16) + 2 = ((4*16) + 13)*16 + 4 = 4*16> + 13*16' + 2*16° = 4D21e.
Back translation to decimal is performed by multiplying hex-digit on position m with 16™.
Example: 4D2.91216 = 4*16> +13*16' +2*16° + 9*167+ 1*16+ 2*167 = 1234.56689.

Exercise: convert to decimal (f=3) : ABC.DEF16 = . ..ttt vttvnnueensnnennnnnsn

Exercise: convertto hex (f=3): 2748 .87116 = ...ttt ittt in ettt eeeennnn

2.6 Real — Binary Conversion

Factors — like filter coefficients — are computed as real numbers and have to be converted to
bit vectors. Let’s assume the number rVal=1.234 has to be converted to a bit string with 8
binary places, 6 of them fractional. The example below shows a possible way to accomplish
this.

rVal=rVal - (1) =rVal - (2°- 2°%) = (rVal - 2) - 26 =(1.234 - 64) - 26=78.976 - 2°¢
iVal = round(rVal-2%) - 2 = round(78.976) - 2°=79 - 26=010011112 - 2=01.001111>.
For the negative rVal2 = -rVal = -1.234 we obtain in the same way rVal2 =-78.976 - 2-6 and

iVal2 = round(rVal2-2°) - 2 = round(-78.976) - 2¢ = -79 - 26 = 10110001, - 2°¢ =
10.110001.

Positive an negative numbers are distinguished by the first bit. Be careful to not set this bit
accidentally by a too large positive number. The largest positive number for a signed 8-Bit
representation is iValmax=2"—1=127 and the largest negative number is iValmin=-2"=—128.

Exercises (for solutions see — chapter 8) :
Convert 1=3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.
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2.7 Floating-Point Numbers

Fig. 2.7: Floating-point data structure | s | exponent mantissa

Table 2.7: IEEE 754 binary formats [1]

Format |Sign | Exponent | Mantissa Total number of bits Exponent bias
Half 1 5 10 16 15
Single 1 8 23 32 127
Double 1 11 52 64 1023
Quad 1 15 112 128 16383

The floating point data structure has 1 sign bit s, e exponent bits and m mantissa bits. The
number is computed from

real value = (-1)s x 2exponent - exponent bias x mantissa
The exponent is biased by (2°!)-1 to obtain both positive and negative exponents.

If possible, the mantissa is stored normalized i.e. with one bit before the point. Example: the
number 101.1101 isstoredas 1.011101 x 2*2

The number is said to be de-normalized if the MSB of the mantissa is 0 and its fraction #0.

Particular situations

e +0 (depending on the sign bit) : exponent = 0 and mantissa = 0.

e +oo (depending on the sign bit) : exponent = 2°-1 (=all ones) and mantissa fraction =0
e NaN (Nota Number) : exponent = 2°-1 (=all ones) and mantissa fraction #0

Floating point numbers are well suited for multiplication and division, as 2* x 2B = 24"B_ byt
not for addition and subtraction, as for this operations it has be brought into a fixed-point like
format. Typically, working with floating-point numbers is significantly more time consuming
than working with fixed-point numbers. However, the range of floating-point numbers is
significantly larger than that of fixed-point numbers.
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3 Rounding and Truncation

Truncation

Truncating a number with integral part g and fractional part £ (i.e. /<1):
g.ftruncates to g (, regardless whether g is positive or negative):
Example:5.8 truncates to 5, -5.8 truncates to —5.

Rounding Threshold

The threshold for rounding is 2-LSB with LSB being the least significant bit. For integral
numbers LSB=1. With Base (or radix) B = 10, 2, 16 we get /2 B = 5, 1, &, respectively.
Consequently the numerical thresholds are 5-107'=0.510 = 1-27'=0.12 = 8:167'=0.81s.

Rounding:

This method corresponds to the C or Matlab expression round(g.f) for decimal numbers.
Positive numbers: g.f rounds to g when f<0.5 and to g+/ when f>0.5.
Negative numbers: g.f rounds to g when f<0.5 andto g-/ when > 0.5.

Possible realization:
+ For numbers > 0 : rounded number =g + f1 , with f; being the first fractional bit.
- For numbers <0 : rounded number = -(g' + f1') with g"f"' = -(g.f).

Bit-Vector Easy Rounding Scheme:
This method corresponds to the C or Matlab expression floor(g.f+0.5) for decimal numbers.

Easy realization: bver rounded number = g + f1 with f; being the first fractional bit.

Exercise:

Fill the empty fields in Table 3-1 to understand the differences between truncation,
mathematical rounding and the bit-vector easy rounding presented above. The bit-strings are
assumed ot be 5-bit signed numbers.

Table 3-1: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary binary decimal | decimal | truncated rounded | +0.1; truncated
rational rational bin | =dec | bin | =dec bin =dec
01.001 | 01001 /23 09/8 +1.125 | 01 +1 | 01 +1 01 +1

01.011 | 01011/2° 11/8 +1.375

01.100 | 01100/2° 12/8 +1.500

01.101 | 01101/2} 13/8 +1.625

01.111 | 01111/23 15/8 +1.875

10.111 | 10111/2° -09/8 -1.125 10 +2 11 -1 11 -1

10.101 | 10101 /2} -11/8 -1.375

10.100 | 10100 /23 -12/8 -1.500

10.011 | 10011 /23 -13/8 | -1.6250

10.001 | 10001 /2° -15/8 | -1.8750
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Check with table 3-2 when rounding and bit-vector easy rounding obtains same or different

results:

Table 3-2: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary decimal decimal rounded +0.1; truncated | iden-
rational | fixed point bin =dec bin =dec tical

001.01111111 | +383 /2% | 1.49609375 001 +1 001 +1 yes
001.10000000 | +384 /2® 1.5
001.10000001 | +385 /2% | 1.50390625
110.10000001 | -384 /2% |-1.49609375| 111 -1 111 -1 yes
110.10000000 | -384 /2% -1.5
110.01111111 | +385/2% | -1.50390625

What is correct?: The difference between rounding and bit-vector easy rounding increases /

decreases with the number of fractional bits.

#|Figure No. 1
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4 Exercise Based on Executable VHDL
Listing 4: Code with gaps

(1) LIBRARY ieee; USE ieee.std logic 1164.ALL;
(2) PACKAGE pk filter IS

(3) CONSTANT cDataInWidth:POSITIVE:=4; -- Input-Data BitWidth

(4) CONSTANT cDataInFract:POSITIVE:=2; -- No of Input-Data fract. Bits
(5) CONSTANT cDataOutWidth:POSITIVE:=5; -- Output-Data BitWidth

(6) CONSTANT cDataOutFract:POSITIVE:=3; -- No of Output-Data fract Bits

(7) CONSTANT cCoefWidth:POSITIVE:=4; -- Coefficient's BitWidth

(8) CONSTANT cCoefFract:POSITIVE:=2; -- No of Coef's fractional Bits

(9) SUBTYPE t DataIn IS std logic vector (cDataInWidth-1 DOWNTO O0) ;

(10) SUBTYPE t DataOut IS std logic vector (cDataOutWidth-1 DOWNTO 0) ;
(11) SUBTYPE t coef IS std logic vector (cCoefWidth-1 DOWNTO O0) ;
(12) END PACKAGE pk filter;

(13)
(14) LIBRARY ieee; USE ieee.std logic 1164.ALL,
(15) ieee.std logic signed."+", ieee.std logic signed."*";

(16) USE WORK.pk filter.ALL;

(17) ENTITY TestBitslice IS

(18) END ENTITY TestBitslice;

(19)

(20) ARCHITECTURE rtl TestBitslice OF TestBitslice IS
(21) SIGNAL DatalIn :t_ Dataln;

(22) SIGNAL coef :t _coef;

(23) SIGNAL DataOut:t DataOut;

(24) SIGNAL product:std logic vector(........ciuiiiiiiiiiiiineencencennns
(25) CONSTANT ZiP1:NATURAL:I= . eeeeennneeeeennneeeeannnneeennnnnneeens
(26) CONSTANT APh:NATURAL:I= . .cccceoceccccssosccscsssssscssssssscssscsssss
(27) BEGIN

(28) DataIn <= "0101", "0100" AFTER 10 ns; -- 1.25, 1.00 AFTER 10 ns
(29) coef <= "0101"; -- 1.25

(30) product <= coef * DatalIn; -- 1.5625, 1.25 AFTER 10 ns
(31) DataOut <= product (iPh DOWNTO iPl) .....iieeeeeecceenecccnncsannnss

(32) END ARCHITECTURE rtl TestBitslice;

Correspondences with chapter 2.3: fe=cCoefFract, fa-=cDatalnFract, fy=cDataOutFract,
We, Wd, Wp, Wy: cCoefWidth, cDataInWidth, cProdWidht, cDataOutWidth, respectively.

Exercises:

»  Complete line (24) to get a product signal that fits to the multiplication of line (30).
»  Compute iP/ und iPh in lines (25), (26) to fit the bit-slice operation of line (31).

»  Extend line (31) to get the bit-slice by bit-vector easy rounding.

»  Verify the product, bit-slice and rounding operation of lines (39), (49) by hand.

-11 -
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S Summary

Binary, decimal and hexadecimal coding were presented as well as conversion techniques
between them, particularly when these number representations appearing fixed-point formats.
After a short glance on floating-point numbers rounding was considered and an easy way to
round bit vectors was presented. The tutorial finished with an example based on VHDL.

6 References

[1] IEEE standard 754, available: http://www.ieee.org/publications_standards/publications/subscriptions/prod/standards_overview.html.
[2] Available: http://de.wikipedia.org -> fixed-point

7 Appendix: Solutions to the Exercises
7.1 Introduction

7.2 Number Representations
7.2.1 Integral Numbers

7.2.2 Fixed Point Numerical Representation: The Q Number Format

Exercise: The bit string 110.1011 can be interpreted...

... as UQ3.4 format representing
1101011*2-4 = 107/16 = 6.6875

... as Q2.4 delivering
-(0010100+1) *2-%4 = -(0010101)*2* = -21/16 = -1.3125.

7.2.3 Multiplication of Fixed-Point Numbers

Exercises (for solutions see — chapter 8) :
Let coef have w, binary places, fc of them fractional. Signal data has waq binary places, fa
of them fractional. The product has

Wp=....We + Wa..... binary places, fp,=....fc + £a..... of them fractional.
Fig. 2.3 illustrates the multiplication of the coefficient coef withwe=..7...,fc=..4..
and the data sample data withwg=...5..., fa=...3....Theproduct prod has
Wp= ... We + Wag.= 7 +5 =12 ................. binary places,

fo= .. fc+ fa =4 +3 =7 ... ... ... ... of them fractional.

We want to take y out of prod preserving the point. For all bit vectors the LSB has index 0.
InFig. 2.3 yhas wy=...7..., binary places fy=...5... of them fractional.

To apply the VHDL command y<=prod (iph DOWNTO ipl) we have to compute
ipl = ... fp - WY = 7 = 5 = 2 ................................
iph = .. ipl + Wy _l = 2 + 7 - l = 8 ........................

7.2.4 Binary to Hexadecimal to Binary Conversion

Exercise: convert to binary:
ABC.DEF;s = 1010 1011 1100 . 1101 1110 1111..

Exercise: convert to hex:

-12 -
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1111 1110 1101.1100 1011 10102 = FED.CBAs¢

7.2.5 Decimal to Hexadecimal to Decimal Conversion

Exercise: convert to decimal (f=3) : ABC.DEF16 = ...... 2748.8708496......
Exercise: convert to hex (f=3): 2748.87116 = ...ABC + 0.871.163 = ......
= ABC + 3566.79 = = ABC + 3567-163 = ABC + DEF-163 = ABC.DEF

7.2.6 Real-to-Binary Conversion

Exercises (for solutions see — chapter 8) :

Convert 1=3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.
3.14159 - (2* . 2°%) = (3.1415916) - 2°* = 50.26... - 274 => 50 - 274
5010 - 27 = 00110010, - 2% = 0011.0010;

Convert -n=-3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.
-3.14159 - (2% - 2%) = (-3.14159:16) - 2°* = -50.26... - 2% => -50 - 2™
(-5010) + 2°* = ((~0011.0010)+1) - 274 = 11001110, - 24 = 1100.1110;

7.3 Rounding and Truncation

Table 3-1: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary bin rat. dec. rat. | decimal | truncated rounded | +0.1; truncated
bin | =dec | bin | =dec bin =dec
01.001 | 01001/2} 09/8 +1.125 | 01 +1 01 +1 01 +1
01.011 | 01011/2} 11/8 +1375 | 01 | 41 | 01 | +1 01 +1
01.100 | 01100/ 23 12/8 +1.500 | 01 | +1 | 10 | +2 10 +2
01.101 | 01101/2° 13/8 +1.625 | 01 | +1 | 10 | +2 10 +2
01.111 | 01111/2} 15/8 +1.875 | 01 | +1 | 10 | +2 10 +2
10.111 | 10111/23 -09/8 -1.125 10 +2 11 -1 11 -1
10.101 | 10101 /2° -11/8 -1.375 | 10 | +2 | 01 -1 11 -1
10.100 | 10100/2° -12/8 -1.500 | 10 -2 | 10 -2 11 -1
10.011 | 10011 /23 -13/8 | -1.6250 | 10 -2 | -2 -2 10 -2
10.001 | 10001 /23 -15/8 | -1.8750 | 10 -2 | -2 -2 10 -2

Table 3-2: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary decimal decimal rounded +0.1; truncated | iden-
rational | fixed point bin =dec bin =dec tical

001.01111111 | +383 /2% | 1.49609375 001 +1 001 +1 yes
001.10000000 | +384/2® 1.5 010 +2 010 +2 yes
001.10000001 | +385/2% | 1.50390625 | 010 +2 010 +2 yes
110.10000001 | -384 /2% | -1.49609375| 111 -1 111 -1 yes
110.10000000 | -384 /2% -1.5 110 -2 111 -1 no
110.01111111 | +385/2% [ -1.50390625 | 110 -2 110 -2 yes

-13 -
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Correct: The difference between rounding and bit-vector easy rounding decreases with the
number of fractional bits.

7.4 Exercise Based on Executable VHDL

Solutions:

(24) SIGNAL product:std logic_vector (cDataInWidth+cCoefWidth-1 DOWNTO 0);
(25) CONSTANT iP1l:NATURAL:=cCoefFract+cDataInFract-cDataOutFract;

(26) CONSTANT iPh:NATURAL:=iPl+cDataOutWidth-1;

(31) DataOut <= product (iPh DOWNTO iPl) + product(iPl-1);

Verification of product and rounding by hand:

Factors:
DataIn = "01.01" , "01.00" AFTER 10 ns; -- = 1.5625 — 1.25
coef = "0l1.01"; -- =1.5

No rounding:

product = "0001.1001", "0001.0100" AFTER 10 ns; -- = 1.5625 — 1.25
DataOut = *0i1.100" , "™ 01.010" AFTER 10 ns; -- = 1.5 — 1.25
With bit-vector easy rounding:

product = "0001.1001", "0001.0100" AFTER 10 ns; -- = 1.5625 — 1.25
DataOut = "01.101" , " 01.010"™ AFTER 10 ns; -- = 1.625 — 1.25

-14 -



