
lektronik
abor

Using Fixed-Point Numbers

Prof. Dr. Martin J. W. Schubert

Electronics Laboratory

Regensburg University of Applied Sciences

Regensburg

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 2 -

Abstract. This tutorial is intended to detail the use of integer and
fixed point numbers when processing data samples with micro
controllers or FPGAs.

1 Introduction
Using integers as fixed point numbers is an essential skill for micro controller and FPGA
programming, particularly when digital signal processing (DSP) and A/D - D/A conversion
are taken into account.

The organization of this document is as follows:

Chapter 1 introduction,

Chapter 2 introduces different number representations and conversion algorithms between
them,

Chapter 3 discusses rounding techniques,

Chapter 4 offers an exercise,

Chapter 5 summarizes the tutorial,

Chapter 6 gives some references and

Chapter 7 the solutions to the exercises.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 3 -

2 Number Representations (See chapter 6.2 for solutions.)
2.1 Integral Numbers

There are two ways to interpret a bit vector as integral number: unsigned and signed,
corresponding to the IEEE VHDL libraries std_logic_unsigned and std_logic_signed, resp.

 Unsigned interpretation: A bit vector of w bits represents the integer range 0 ... 2w – 1.

 Signed interpretation: A bit vector of w bits represents the int. range –2w–1 ... +2w–1 – 1.

2.2 Fixed Point Numerical Representation: The Q Number Format

Unsigned: UQg.f with g integral (deutsch: ganze) and f fractional bits. Width w=g+f.
Signed: Qg.f with 1 sign bit plus g integral and f fraction bits. Width w=1+g+f.

Example: 101.1001 can be interpreted as UQ3.4 format representing 1011001*2-4 = 89/16 =
5.5625 or as Q2.4 delivering –(0100110+1) *2-4 = –(0100111) *2-4 = -39/16 = -2.4375.

Exercise: The bit string 110.1011 can be interpreted...

... as UQ3.4 format representing

..

... as Q2.4 delivering

..

Unsigned: Range: 0 ≤ AU ≤
f

fg

2

12

, Resolution: r = 2-f =
f2

1
.

Singed Range:
f

fg

2

2

 ≤ AS ≤
f

fg

2

12

 , Resolution: r = 2-f =
f2

1
.

 You can append an arbitrary number of zeros after the point.
 You can precede an arbitrary number of zeros before an unsigned number.
 You can precede an arbitrary multiple of the sign bit before a signed number.

Summation an subtraction of fixed-point numbers is easy as they can be treated like integer
numbers when they are written such that the points are over each other. Example:

Given numbers Unsigned treatment Signed treatment
 11011011.11011
 101.11101101

 11011011.11011000
 00000101.11101101

 11011011.11011000
 11111101.11101101

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 4 -

Table 2.2: Q-formats (as typical for micro controllers), w: total number of bits, r: resolution

Format w g f min max r (resolution)
UQ16 16 16 0 0 2^16 - r 1
UQ.16 16 0 16 0 1 - r 2^-16
Q15 16 15 0 -2^15 2^15 - r 1
Q.15 16 0 15 -1 1 – r 2^-15
UQ16.16 32 16 16 0 2^16 - r 2^-16
Q15.16 32 15 16 -2^15 2^15 - r 2^-16

Caution: Sometimes you will find the so-called Qf-Format with Q15 meaning Qg.15, g=?.
Then we know about 1 sign bit and 15 fractional bits but an unknown number of integral bits.
This causes uncertainty! Avoid it, even in a C program with all integers having 32 bits
(because there also exist short int (16 bits) and char (8 bits) types in C).

 You cannot mark the Q-format within the bit string. It’s a predefined arrangement of your

design.

2.3 Multiplication of Fixed-Point Numbers

Fig. 2.3:
Reducing the product length
to the length of its factors
with indices iph and ipl.

coef

data

prod

0wc-1

wp-1 0iph

wd-1 0

wy-1

ipl

0

y

We compute prod = coef * data with coef and data having wc and wd binary places,
respectively, fc and fd of them fractional. Then prod has wp=wc+wd binary places, fp=fc+fd
of them fractional.

Mathematical proof: We can write coef = icoef∙2-fc and data = idata∙2-fd with ixxx integral.
Consequently, the product can be written as
prod = coef ∙ data = icoef∙2-fc ∙ idata∙2-fd = icoef∙ idata∙2-(fc+fd).

Reducing the length of products:

Proof: We want to reduce the width of prod by taking result vector y out of it. Result y has wy
bits in formatted as [U]Qgy.fy.

Considering fractional bits only:
The fractional part of product prod consists of bits fp-1...0.
The fractional part of result y will consist of bits fy-1...0.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 5 -

Preserving the point we get y(fy-1 : 0) = p(fp-1 : fp-fy) with lowest index ipl = fp-fy.

Considering integral bits also:
As y = y(wy-1 : 0) its max. index is wy–1 larger than its min. index: iph = ipl + (wy-1).

Consequently (formula to be used in exercise chapter 4):

y = prod(iph : ipl) with ipl = fp-fy, iph = ipl + wy-1

Exercises (for solutions see → chapter 6) :

Let coef have wc binary places, fc of them fractional. Signal data has wd binary places, fd
of them fractional. The product has

wp = binary places, fp = of them fractional.

Fig. 2.3 illustrates the multiplication of the coefficient coef with wc =, fc =

and the data sample data with wd =, fd = The product prod has

wp = ... binary places,

fp = .. of them fractional.

We want to take result vector y out of prod preserving the point. For all bit vectors the LSB
has index 0.

In Fig. 2.3 y has wy =, binary places fy = of them fractional.

To apply the VHDL command y<=prod(iph DOWNTO ipl) we have to compute

ipl = ..

iph = ..

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 6 -

2.4 Binary Hexadecimal Binary Conversion

Table 2.4: Mapping decimal, hexadecimal and binary numbers

Decimal
number

Hexadecimal
Digit

Bit vector Decimal
number

Hexadecimal
Digit

Bit
vector

0 0 0000 8 8 1000
1 1 0001 9 9 1001
2 2 0010 10 A 1010
3 3 0011 11 B 1011
4 4 0100 12 C 1100
5 5 0101 13 D 1101
6 6 0110 14 E 1110
7 7 0111 15 F 1111

Hexadecimal numbers are easier to read and remember than bit vectors. Starting from the
point bits are subdivided into packages of 4 bits and replaced by equivalent hex-digits.

Example: 10100101101.0110101101012 = 101 0010 1101 . 0110 1011 01012 = 52D.6B516.

Convert the hex-number back to a bit vector translating every hex-digit to a 4-bit string.

Example: = 52D.6B516 => 101 0010 1101 . 0110 1011 01012.

Exercise: convert to binary:

ABC.DEF16 = .
 ...

Exercise: convert to hex:

1111 1110 1101.1100 1011 10102 =

2.5 Decimal Hexadecimal Decimal Conversion

Decide for the number of fractional hex-digits, fh, and multiply the decimal number with 16fh.
If desired the decimal number can then be rounded or truncated. The resulting integral
number is then converted to a hex-number.

Example: We want to have fh=3 hexadecimal fractional digits.

1234.56710 = 1234.56710 * (163*16-3) = 1234.56710 * 163 * 16-3 = 5 056 786.43210 * 16-3

 ≈ 5 056 78610 * 16-3 = 4D291216 * 16-3 = 4D2.91216

Easier to compute might be the form separating integral and fractional parts:

1234.56710 =123410 + 0.56710 = 4D216 + 0.56710* 163 * 16-3 = 4D216 + 2322.43210 * 16-3

 ≈ 4D216 + 232210 * 16-3 = 4D216 + 91216 * 16-3 = 4D2.91216

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 7 -

Remember: 123410 = (77*16) + 2 = ((4*16) + 13)*16 + 4 = 4*162 + 13*161 + 2*160 = 4D216.

Back translation to decimal is performed by multiplying hex-digit on position m with 16m.

Example: 4D2.91216 = 4*162 +13*161 + 2*160 + 9*16-1+ 1*16-2+ 2*16-3 ≈ 1234.56689.

Exercise: convert to decimal (f=3) : ABC.DEF16 =

Exercise: convert to hex (f=3): 2748.87116 =

..

2.6 Real Binary Conversion

Factors – like filter coefficients – are computed as real numbers and have to be converted to
bit vectors. Let’s assume the number rVal=1.234 has to be converted to a bit string with 8
binary places, 6 of them fractional. The example below shows a possible way to accomplish
this.

rVal = rVal ꞏ (1) = rVal ꞏ (26 ꞏ 2-6) = (rVal ꞏ 26) ꞏ 2-6 = (1.234 ꞏ 64) ꞏ 2-6 = 78.976 ꞏ 2-6
iVal = round(rValꞏ26) ꞏ 2-6 = round(78.976) ꞏ 2-6 = 79 ꞏ 2-6 = 010011112 ꞏ 2-6 = 01.0011112.

For the negative rVal2 = -rVal = -1.234 we obtain in the same way rVal2 = -78.976 ꞏ 2-6 and
iVal2 = round(rVal2ꞏ26) ꞏ 2-6 = round(-78.976) ꞏ 2-6 = -79 ꞏ 2-6 = 101100012 ꞏ 2-6 =
10.1100012.

Positive an negative numbers are distinguished by the first bit. Be careful to not set this bit
accidentally by a too large positive number. The largest positive number for a signed 8-Bit
representation is iValmax=27–1=127 and the largest negative number is iValmin=–27=–128.

Exercises (for solutions see → chapter 8) :
Convert π=3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.

..

..

Convert -π=-3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.

..

..

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 8 -

2.7 Floating-Point Numbers

Fig. 2.7: Floating-point data structure s exponent mantissa

Table 2.7: IEEE 754 binary formats [1]

Format Sign Exponent Mantissa Total number of bits Exponent bias
Half 1 5 10 16 15
Single 1 8 23 32 127
Double 1 11 52 64 1023
Quad 1 15 112 128 16383

The floating point data structure has 1 sign bit s, e exponent bits and m mantissa bits. The
number is computed from

real_value = (-1)s x 2exponent – exponent_bias x mantissa

The exponent is biased by (2e-1)-1 to obtain both positive and negative exponents.

If possible, the mantissa is stored normalized i.e. with one bit before the point. Example: the
number 101.1101 is stored as 1.011101 x 2+2.

The number is said to be de-normalized if the MSB of the mantissa is 0 and its fraction 0.

Particular situations
 ±0 (depending on the sign bit) : exponent = 0 and mantissa = 0.
 ± (depending on the sign bit) : exponent = 2e-1 (=all ones) and mantissa fraction =0
 NaN (Not a Number) : exponent = 2e-1 (=all ones) and mantissa fraction 0

Floating point numbers are well suited for multiplication and division, as 2A x 2B = 2A+B, but
not for addition and subtraction, as for this operations it has be brought into a fixed-point like
format. Typically, working with floating-point numbers is significantly more time consuming
than working with fixed-point numbers. However, the range of floating-point numbers is
significantly larger than that of fixed-point numbers.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 9 -

3 Rounding and Truncation
Truncation
Truncating a number with integral part g and fractional part f (i.e. f<1):
g.f truncates to g (, regardless whether g is positive or negative):
Example:5.8 truncates to 5, -5.8 truncates to –5.

Rounding Threshold
The threshold for rounding is ½LSB with LSB being the least significant bit. For integral
numbers LSB=1. With Base (or radix) B = 10, 2, 16 we get ½ B = 5, 1, 8, respectively.
Consequently the numerical thresholds are 510-1=0.510 = 12-1=0.12 = 816-1=0.816.

Rounding:
This method corresponds to the C or Matlab expression round(g.f) for decimal numbers.
Positive numbers: g.f rounds to g when f < 0.5 and to g+1 when f 0.5.
Negative numbers: g.f rounds to g when f < 0.5 and to g-1 when f 0.5.

Possible realization:
+ For numbers ≥ 0 : rounded_number = g + f1 , with f1 being the first fractional bit.
- For numbers < 0 : rounded_number = -(g' + f1') with g'.f ' = -(g.f).

Bit-Vector Easy Rounding Scheme:
This method corresponds to the C or Matlab expression floor(g.f+0.5) for decimal numbers.

Easy realization: bver_rounded_number = g + f1 with f1 being the first fractional bit.

Exercise:
Fill the empty fields in Table 3-1 to understand the differences between truncation,
mathematical rounding and the bit-vector easy rounding presented above. The bit-strings are
assumed ot be 5-bit signed numbers.

Table 3-1: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary binary decimal decimal truncated rounded +0.12 truncated
 rational rational bin =dec bin =dec bin =dec

01.001 0 1001 / 23 09 / 8 +1.125 01 +1 01 +1 01 +1
01.011 0 1011 / 23 11 / 8 +1.375
01.100 0 1100 / 23 12 / 8 +1.500
01.101 0 1101 / 23 13 / 8 +1.625
01.111 0 1111 / 23 15 / 8 +1.875

10.111 1 0111 / 23 -09 / 8 -1.125 10 +2 11 -1 11 -1
10.101 1 0101 / 23 -11 / 8 -1.375
10.100 1 0100 / 23 -12 / 8 -1.500
10.011 1 0011 / 23 -13 / 8 -1.6250
10.001 1 0001 / 23 -15 / 8 -1.8750

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 10 -

Check with table 3-2 when rounding and bit-vector easy rounding obtains same or different
results:

Table 3-2: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary decimal decimal rounded +0.12 truncated iden-
 rational fixed point bin =dec bin =dec tical

001.01111111 +383 / 28 1.49609375 001 +1 001 +1 yes
001.10000000 +384 / 28 1.5
001.10000001 +385 / 28 1.50390625

110.10000001 -384 / 28 -1.49609375 111 -1 111 -1 yes
110.10000000 -384 / 28 -1.5
110.01111111 +385 / 28 -1.50390625

What is correct?: The difference between rounding and bit-vector easy rounding increases /
decreases with the number of fractional bits.

Fig. 3: Matlab plot. Top down: truncation, rounding, bit-vector easy rounding, 3-level
quantization. Differences between the second and third line are in -n.5 only.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 11 -

4 Exercise Based on Executable VHDL
Listing 4: Code with gaps

(1) LIBRARY ieee; USE ieee.std_logic_1164.ALL;
(2) PACKAGE pk_filter IS
(3) CONSTANT cDataInWidth:POSITIVE:=4; -- Input-Data BitWidth
(4) CONSTANT cDataInFract:POSITIVE:=2; -- No of Input-Data fract. Bits
(5) CONSTANT cDataOutWidth:POSITIVE:=5; -- Output-Data BitWidth
(6) CONSTANT cDataOutFract:POSITIVE:=3; -- No of Output-Data fract Bits
(7) CONSTANT cCoefWidth:POSITIVE:=4; -- Coefficient's BitWidth
(8) CONSTANT cCoefFract:POSITIVE:=2; -- No of Coef's fractional Bits
(9) SUBTYPE t_DataIn IS std_logic_vector(cDataInWidth-1 DOWNTO 0);
(10) SUBTYPE t_DataOut IS std_logic_vector(cDataOutWidth-1 DOWNTO 0);
(11) SUBTYPE t_coef IS std_logic_vector(cCoefWidth-1 DOWNTO 0);
(12) END PACKAGE pk_filter;
(13)
(14) LIBRARY ieee; USE ieee.std_logic_1164.ALL,
(15) ieee.std_logic_signed."+", ieee.std_logic_signed."*";
(16) USE WORK.pk_filter.ALL;
(17) ENTITY TestBitslice IS
(18) END ENTITY TestBitslice;
(19)
(20) ARCHITECTURE rtl_TestBitslice OF TestBitslice IS
(21) SIGNAL DataIn :t_DataIn;
(22) SIGNAL coef :t_coef;
(23) SIGNAL DataOut:t_DataOut;

(24) SIGNAL product:std_logic_vector(...................................

...

(25) CONSTANT iPl:NATURAL:= ..

...

(26) CONSTANT iPh:NATURAL:= ..

...

(27) BEGIN
(28) DataIn <= "0101", "0100" AFTER 10 ns; -- 1.25, 1.00 AFTER 10 ns
(29) coef <= "0101"; -- 1.25
(30) product <= coef * DataIn; -- 1.5625, 1.25 AFTER 10 ns

(31) DataOut <= product(iPh DOWNTO iPl)

...

(32) END ARCHITECTURE rtl_TestBitslice;

Correspondences with chapter 2.3: fc=cCoefFract, fd=cDataInFract, fy=cDataOutFract,
wc, wd, wp, wy: cCoefWidth, cDataInWidth, cProdWidht, cDataOutWidth, respectively.

Exercises:
 Complete line (24) to get a product signal that fits to the multiplication of line (30).
 Compute iPl und iPh in lines (25), (26) to fit the bit-slice operation of line (31).
 Extend line (31) to get the bit-slice by bit-vector easy rounding.
 Verify the product, bit-slice and rounding operation of lines (39), (49) by hand.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 12 -

5 Summary
Binary, decimal and hexadecimal coding were presented as well as conversion techniques
between them, particularly when these number representations appearing fixed-point formats.
After a short glance on floating-point numbers rounding was considered and an easy way to
round bit vectors was presented. The tutorial finished with an example based on VHDL.

6 References
[1] IEEE standard 754, available: http://www.ieee.org/publications_standards/publications/subscriptions/prod/standards_overview.html.
[2] Available: http://de.wikipedia.org -> fixed-point

7 Appendix: Solutions to the Exercises
7.1 Introduction

7.2 Number Representations

7.2.1 Integral Numbers

7.2.2 Fixed Point Numerical Representation: The Q Number Format

Exercise: The bit string 110.1011 can be interpreted...
... as UQ3.4 format representing
1101011*2-4 = 107/16 = 6.6875
... as Q2.4 delivering
–(0010100+1)*2-4 = –(0010101)*2-4 = -21/16 = -1.3125.

7.2.3 Multiplication of Fixed-Point Numbers

Exercises (for solutions see → chapter 8) :
Let coef have wc binary places, fc of them fractional. Signal data has wd binary places, fd
of them fractional. The product has
wp =wc + wd..... binary places, fp =fc + fd.....of them fractional.
Fig. 2.3 illustrates the multiplication of the coefficient coef with wc = ..7..., fc = ..4..
and the data sample data with wd = ...5..., fd = ...3.... The product prod has
wp = ... wc + wd.= 7 + 5 = 12 binary places,
fp = .. fc + fd = 4 + 3 = 7 of them fractional.
We want to take y out of prod preserving the point. For all bit vectors the LSB has index 0.
In Fig. 2.3 y has wy = ...7..., binary places fy = ...5... of them fractional.
To apply the VHDL command y<=prod(iph DOWNTO ipl) we have to compute
ipl = ... fp – wy = 7 - 5 = 2
iph = ... ipl + wy –1 = 2 + 7 – 1 = 8

7.2.4 Binary to Hexadecimal to Binary Conversion

Exercise: convert to binary:
ABC.DEF16 = 1010 1011 1100 . 1101 1110 11112.
Exercise: convert to hex:

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 13 -

1111 1110 1101.1100 1011 10102 = FED.CBA16

7.2.5 Decimal to Hexadecimal to Decimal Conversion

Exercise: convert to decimal (f=3) : ABC.DEF16 =2748.8708496......
Exercise: convert to hex (f=3): 2748.87116 = ...ABC + 0.87116-3 =
= ABC + 3566.79 ≈ = ABC + 356716-3 = ABC + DEF16-3 = ABC.DEF

7.2.6 Real-to-Binary Conversion

Exercises (for solutions see → chapter 8) :
Convert π=3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.
3.14159 (24 2-4) = (3.1415916) 2-4 = 50.26... 2-4 => 50 2-4
5010 2-4 = 001100102 2-4 = 0011.00102

Convert -π=-3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.
-3.14159 (24 2-4) = (-3.1415916) 2-4 = -50.26... 2-4 => -50 2-4
(-5010) 2-4 = ((~0011.00102)+1) 2-4 = 110011102 2-4 = 1100.11102

7.3 Rounding and Truncation
Table 3-1: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary bin rat. dec. rat. decimal truncated rounded +0.12 truncated
 bin =dec bin =dec bin =dec

01.001 0 1001 / 23 09 / 8 +1.125 01 +1 01 +1 01 +1
01.011 0 1011 / 23 11 / 8 +1.375 01 +1 01 +1 01 +1
01.100 0 1100 / 23 12 / 8 +1.500 01 +1 10 +2 10 +2
01.101 0 1101 / 23 13 / 8 +1.625 01 +1 10 +2 10 +2
01.111 0 1111 / 23 15 / 8 +1.875 01 +1 10 +2 10 +2

10.111 1 0111 / 23 -09 / 8 -1.125 10 +2 11 -1 11 -1
10.101 1 0101 / 23 -11 / 8 -1.375 10 +2 01 -1 11 -1
10.100 1 0100 / 23 -12 / 8 -1.500 10 -2 10 -2 11 -1
10.011 1 0011 / 23 -13 / 8 -1.6250 10 -2 -2 -2 10 -2
10.001 1 0001 / 23 -15 / 8 -1.8750 10 -2 -2 -2 10 -2

Table 3-2: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary decimal decimal rounded +0.12 truncated iden-
 rational fixed point bin =dec bin =dec tical

001.01111111 +383 / 28 1.49609375 001 +1 001 +1 yes
001.10000000 +384 / 28 1.5 010 +2 010 +2 yes
001.10000001 +385 / 28 1.50390625 010 +2 010 +2 yes

110.10000001 -384 / 28 -1.49609375 111 -1 111 -1 yes
110.10000000 -384 / 28 -1.5 110 -2 111 -1 no
110.01111111 +385 / 28 -1.50390625 110 -2 110 -2 yes

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

 - 14 -

Correct: The difference between rounding and bit-vector easy rounding decreases with the
number of fractional bits.

7.4 Exercise Based on Executable VHDL
Solutions:
(24) SIGNAL product:std_logic_vector(cDataInWidth+cCoefWidth-1 DOWNTO 0);
(25) CONSTANT iPl:NATURAL:=cCoefFract+cDataInFract-cDataOutFract;
(26) CONSTANT iPh:NATURAL:=iPl+cDataOutWidth-1;
(31) DataOut <= product(iPh DOWNTO iPl) + product(iPl-1);

Verification of product and rounding by hand:

Factors:
DataIn = "01.01" , "01.00" AFTER 10 ns; -- = 1.5625 1.25
coef = "01.01"; -- = 1.5

No rounding:
product = "0001.1001", "0001.0100" AFTER 10 ns; -- = 1.5625 1.25
DataOut = "01.100" , " 01.010" AFTER 10 ns; -- = 1.5 1.25

With bit-vector easy rounding:
product = "0001.1001", "0001.0100" AFTER 10 ns; -- = 1.5625 1.25
DataOut = "01.101" , " 01.010" AFTER 10 ns; -- = 1.625 1.25

