- OSTBAYERISCHE
J I -_ TECHNISCHE HOCHSCHULE
REGENSBURG

h |: | FPII.EgTR%dc:TH;LDSTECHNIK
abor :

Using Fixed-Point Numbers

Prof. Dr. Martin J. W. Schubert
Electronics Laboratory
Regensburg University of Applied Sciences
Regensburg

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

Abstract. This tutorial is intended to detail the use of integer and
fixed point numbers when processing data samples with micro
controllers or FPGAs.

1 Introduction

Using integers as fixed point numbers is an essential skill for micro controller and FPGA
programming, particularly when digital signal processing (DSP) and A/D - D/A conversion
are taken into account.

The organization of this document is as follows:

Chapter 1 introduction,

Chapter 2 introduces different number representations and conversion algorithms between
them,

Chapter 3 discusses rounding techniques,
Chapter 4 offers an exercise,

Chapter 5 summarizes the tutorial,
Chapter 6 gives some references and

Chapter 7 the solutions to the exercises.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

2 Number Representations (See chapter 6.2 for solutions.)
2.1 Integral Numbers

There are two ways to interpret a bit vector as integral number: unsigned and signed,
corresponding to the /JEEE VHDL libraries std logic _unsigned and std _logic signed, resp.

e Unsigned interpretation: A bit vector of w bits represents the integer range 0...2" —1.

e Signed interpretation: A bit vector of w bits represents the int. range —2"!..+2"1-1,

2.2 Fixed Point Numerical Representation: The Q Number Format

Unsigned: UQg.f with g integral (deutsch: ganze) and f fractional bits. Width w=g+f.
Signed: Qg.f with 1 sign bit plus g integral and f fraction bits. Width w=1/+g+f.

Example: 101.1001 can be interpreted as UQ3.4 format representing 1011001*2** = 89/16 =
5.5625 or as Q2.4 delivering <(0100110+1) *24 = —0100111) *2* =-39/16 = -2.4375.

Exercise: The bit string 110.1011 can be interpreted...

... as UQ3.4 format representing

... as Q2.4 delivering
28] 1
Unsigned: Range: 0 <4< ———, Resolution: r=2T= — .
2/ 2/
28/ 28 1
Singed Range: — <As< —, Resolution: r=2T= — |
27 27 2/

» You can append an arbitrary number of zeros after the point.
» You can precede an arbitrary number of zeros before an unsigned number.
» You can precede an arbitrary multiple of the sign bit before a signed number.

Summation an subtraction of fixed-point numbers is easy as they can be treated like integer
numbers when they are written such that the points are over each other. Example:

Given numbers Unsigned treatment Signed treatment
11011011.11011 11011011.11011000 11011011.11011000
+ 101.11101101 |+ 00000101.11101101 |+ 11111101.11101101

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

Table 2.2: Q-formats (as typical for micro controllers), w: total number of bits, r: resolution

Format w g f min max r (resolution)
UuQ1e6 16 16 0 0 276 -1 1
UQ.16 16 0 16 0 l-r 27-16
Q15 16 15 0 =215 275 -1 1

Q.15 16 0 15 -1 l-r 27-15
UQ16.16 32 16 16 0 276 -1 27-16
Q15.16 32 15 16 -2715 275 -r 27-16

Caution: Sometimes you will find the so-called Qf-Format with Q15 meaning Qg.15, g=?.
Then we know about 1 sign bit and 15 fractional bits but an unknown number of integral bits.
This causes uncertainty! Avoid it, even in a C program with all integers having 32 bits
(because there also exist short int (16 bits) and char (8 bits) types in C).

» You cannot mark the Q-format within the bit string. It’s a predefined arrangement of your
design.

2.3 Multiplication of Fixed-Point Numbers

Fig. 2.3:

we-1 0
Wp-1 iph ip| 0
Reducing the product length coef S ! 1 ! !
®— prod [TITTITTITTT]
/
Wd-1 0

data

to the length of its fact
with indices s and s, W

wy-1 0

We compute prod = coef * data with coef and data having wc and wq binary places,
respectively, fc and fq of them fractional. Then prod has wy=wc+wq binary places, fp=fc+fq
of them fractional.

Mathematical proof: We can write coef = icoef-27f¢ and data = idata-2-%¢ with ixxx integral.
Consequently, the product can be written as
prod = coef - data = icoef-27f¢ - idata-2f = icoef- idata-2-(fctfd)

Reducing the length of products:

Proof: We want to reduce the width of prod by taking result vector y out of it. Result y has wy
bits in formatted as [U]Qgy.fy.

Considering fractional bits only:
The fractional part of product prod consists of bits fp-1...0.
The fractional part of result y will consist of bits fy-1...0.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

Preserving the point we get y(fy-1 : 0) = p(fp-1 : fp-fy) with lowest index ip1 = f-fy.

Considering integral bits also:
As y =y(wy-1: 0) its max. index is wy—1 larger than its min. index: ipn = ip1 + (Wy-1).

Consequently (formula to be used in exercise chapter 4):

v = prod(ipn : ip) Wwith ip=fo-fy, iph = ipi + Wy-1

Exercises (for solutions see — chapter 6) :

Let coef have we binary places, fc of them fractional. Signal data has wq binary places, fa
of them fractional. The product has

Wp = e et e e e binary places, fp=............... of them fractional.
Fig. 2.3 illustrates the multiplication of the coefficient coef withwe= M=ot
and the data sample data withwg=....... , fa=........ The product prod has
T o et e e e e e e e e e e binary places,
f = e e e e of them fractional.

We want to take result vector y out of prod preserving the point. For all bit vectors the LSB
has index 0.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

2.4 Binary —» Hexadecimal — Binary Conversion

Table 2.4: Mapping decimal, hexadecimal and binary numbers

Decimal | Hexadecimal | Bit vector Decimal | Hexadecimal Bit

number Digit number Digit vector
0 0 0000 8 8 1000
1 1 0001 9 9 1001
2 2 0010 10 A 1010
3 3 0011 11 B 1011
4 4 0100 12 C 1100
5 5 0101 13 D 1101
6 6 0110 14 E 1110
7 7 0111 15 F 1111

Hexadecimal numbers are easier to read and remember than bit vectors. Starting from the
point bits are subdivided into packages of 4 bits and replaced by equivalent hex-digits.

Example: 10100101101.0110101101012=101 0010 1101.0110 1011 01012 =52D.6B51s.
Convert the hex-number back to a bit vector translating every hex-digit to a 4-bit string.
Example: = 52D.6B516 => 101 0010 1101.0110 1011 0101-.

Exercise: convert to binary:

ABC.DEF16 = .

Exercise: convert to hex:

1111 1110 1101.1100 1011 1010

2.5 Decimal - Hexadecimal — Decimal Conversion

Decide for the number of fractional hex-digits, fa, and multiply the decimal number with 16™.
If desired the decimal number can then be rounded or truncated. The resulting integral
number is then converted to a hex-number.

Example: We want to have f;=3 hexadecimal fractional digits.
1234.56710 = 1234.56710 * (16°*167%) = 1234.56710 * 16* * 16 = 5 056 786.43210 * 167
=~ 5056 78610 * 16> = 4D291216 * 16 = 4D2.91216

Easier to compute might be the form separating integral and fractional parts:
1234.56710 =123410+ 0.56710 = 4D216 + 0.56710* 16> * 167 = 4D216 + 2322.43210 * 16
=~ 4D216 + 232210 * 162 = 4D216 + 91216 * 167 =4D2.91216

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

Remember: 123410 = (77*16) + 2 = ((4*16) + 13)*16 + 4 = 4*16> + 13*16' + 2*16° = 4D21e.
Back translation to decimal is performed by multiplying hex-digit on position m with 16™.
Example: 4D2.91216 = 4*16> +13*16' +2*16° + 9*167+ 1*16+ 2*167 = 1234.56689.

Exercise: convert to decimal (f=3) : ABC.DEF16 = . ..ttt vttvnnueensnnennnnnsn

Exercise: convertto hex (f=3): 2748 .87116 = ...ttt ittt in ettt eeeennnn

2.6 Real — Binary Conversion

Factors — like filter coefficients — are computed as real numbers and have to be converted to
bit vectors. Let’s assume the number rVal=1.234 has to be converted to a bit string with 8
binary places, 6 of them fractional. The example below shows a possible way to accomplish
this.

rVal=rVal - (1) =rVal - (2°- 2°%) = (rVal - 2) - 26 =(1.234 - 64) - 26=78.976 - 2°¢
iVal = round(rVal-2%) - 2 = round(78.976) - 2°=79 - 26=010011112 - 2=01.001111>.
For the negative rVal2 = -rVal = -1.234 we obtain in the same way rVal2 =-78.976 - 2-6 and

iVal2 = round(rVal2-2°) - 2 = round(-78.976) - 2¢ = -79 - 26 = 10110001, - 2°¢ =
10.110001.

Positive an negative numbers are distinguished by the first bit. Be careful to not set this bit
accidentally by a too large positive number. The largest positive number for a signed 8-Bit
representation is iValmax=2"—1=127 and the largest negative number is iValmin=-2"=—128.

Exercises (for solutions see — chapter 8) :
Convert 1=3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

2.7 Floating-Point Numbers

Fig. 2.7: Floating-point data structure | s | exponent mantissa

Table 2.7: IEEE 754 binary formats [1]

Format |Sign | Exponent | Mantissa Total number of bits Exponent bias
Half 1 5 10 16 15
Single 1 8 23 32 127
Double 1 11 52 64 1023
Quad 1 15 112 128 16383

The floating point data structure has 1 sign bit s, e exponent bits and m mantissa bits. The
number is computed from

real value = (-1)s x 2exponent - exponent bias x mantissa
The exponent is biased by (2°!)-1 to obtain both positive and negative exponents.

If possible, the mantissa is stored normalized i.e. with one bit before the point. Example: the
number 101.1101 isstoredas 1.011101 x 2*2

The number is said to be de-normalized if the MSB of the mantissa is 0 and its fraction #0.

Particular situations

e +0 (depending on the sign bit) : exponent = 0 and mantissa = 0.

e +oo (depending on the sign bit) : exponent = 2°-1 (=all ones) and mantissa fraction =0
e NaN (Nota Number) : exponent = 2°-1 (=all ones) and mantissa fraction #0

Floating point numbers are well suited for multiplication and division, as 2* x 2B = 24"B_ byt
not for addition and subtraction, as for this operations it has be brought into a fixed-point like
format. Typically, working with floating-point numbers is significantly more time consuming
than working with fixed-point numbers. However, the range of floating-point numbers is
significantly larger than that of fixed-point numbers.

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

3 Rounding and Truncation

Truncation

Truncating a number with integral part g and fractional part £ (i.e. /<1):
g.ftruncates to g (, regardless whether g is positive or negative):
Example:5.8 truncates to 5, -5.8 truncates to —5.

Rounding Threshold

The threshold for rounding is 2-LSB with LSB being the least significant bit. For integral
numbers LSB=1. With Base (or radix) B = 10, 2, 16 we get /2 B = 5, 1, &, respectively.
Consequently the numerical thresholds are 5-107'=0.510 = 1-27'=0.12 = 8:167'=0.81s.

Rounding:

This method corresponds to the C or Matlab expression round(g.f) for decimal numbers.
Positive numbers: g.f rounds to g when f<0.5 and to g+/ when f>0.5.
Negative numbers: g.f rounds to g when f<0.5 andto g-/ when > 0.5.

Possible realization:
+ For numbers > 0 : rounded number =g + f1 , with f; being the first fractional bit.
- For numbers <0 : rounded number = -(g' + f1') with g"f"' = -(g.f).

Bit-Vector Easy Rounding Scheme:
This method corresponds to the C or Matlab expression floor(g.f+0.5) for decimal numbers.

Easy realization: bver rounded number = g + f1 with f; being the first fractional bit.

Exercise:

Fill the empty fields in Table 3-1 to understand the differences between truncation,
mathematical rounding and the bit-vector easy rounding presented above. The bit-strings are
assumed ot be 5-bit signed numbers.

Table 3-1: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary binary decimal | decimal | truncated rounded | +0.1; truncated
rational rational bin | =dec | bin | =dec bin =dec
01.001 | 01001 /23 09/8 +1.125 | 01 +1 | 01 +1 01 +1

01.011 | 01011/2° 11/8 +1.375

01.100 | 01100/2° 12/8 +1.500

01.101 | 01101/2} 13/8 +1.625

01.111 | 01111/23 15/8 +1.875

10.111 | 10111/2° -09/8 -1.125 10 +2 11 -1 11 -1

10.101 | 10101 /2} -11/8 -1.375

10.100 | 10100 /23 -12/8 -1.500

10.011 | 10011 /23 -13/8 | -1.6250

10.001 | 10001 /2° -15/8 | -1.8750

M. Schubert

RE2 / PRE2 FSM Design for DSP Using Matlab

Regensburg Univ. of Appl. Sciences

Check with table 3-2 when rounding and bit-vector easy rounding obtains same or different

results:

Table 3-2: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary decimal decimal rounded +0.1; truncated | iden-
rational | fixed point bin =dec bin =dec tical

001.01111111 | +383 /2% | 1.49609375 001 +1 001 +1 yes
001.10000000 | +384 /2® 1.5
001.10000001 | +385 /2% | 1.50390625
110.10000001 | -384 /2% |-1.49609375| 111 -1 111 -1 yes
110.10000000 | -384 /2% -1.5
110.01111111 | +385/2% | -1.50390625

What is correct?: The difference between rounding and bit-vector easy rounding increases /

decreases with the number of fractional bits.

#|Figure No. 1

Eile Edit Tools Window Help

=181

[IRR=N = =N N R o

truncation / rounding /

quantization

[¥]

truncation
Lo =

(]
(220 s
8

-~

mathermnaticl rounding

oM S o

-~

hit-vec. easy rounding

- o
——

...

h
(E0 1 - ——
ra

(¥

3 level guantization
L oo o

RN

trunc- / round- / quant -error

truncation

mathernaticl rounding

hit-vec. easy rounding

3 level guantization

Fig. 3:

Matlab plot. Top down: truncation, rounding, bit-vector easy rounding, 3-level

quantization. Differences between the second and third line are in -n.5 only.

-10 -

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

4 Exercise Based on Executable VHDL
Listing 4: Code with gaps

(1) LIBRARY ieee; USE ieee.std logic 1164.ALL;
(2) PACKAGE pk filter IS

(3) CONSTANT cDataInWidth:POSITIVE:=4; -- Input-Data BitWidth

(4) CONSTANT cDataInFract:POSITIVE:=2; -- No of Input-Data fract. Bits
(5) CONSTANT cDataOutWidth:POSITIVE:=5; -- Output-Data BitWidth

(6) CONSTANT cDataOutFract:POSITIVE:=3; -- No of Output-Data fract Bits

(7) CONSTANT cCoefWidth:POSITIVE:=4; -- Coefficient's BitWidth

(8) CONSTANT cCoefFract:POSITIVE:=2; -- No of Coef's fractional Bits

(9) SUBTYPE t DataIn IS std logic vector (cDataInWidth-1 DOWNTO O0) ;

(10) SUBTYPE t DataOut IS std logic vector (cDataOutWidth-1 DOWNTO 0) ;
(11) SUBTYPE t coef IS std logic vector (cCoefWidth-1 DOWNTO O0) ;
(12) END PACKAGE pk filter;

(13)
(14) LIBRARY ieee; USE ieee.std logic 1164.ALL,
(15) ieee.std logic signed."+", ieee.std logic signed."*";

(16) USE WORK.pk filter.ALL;

(17) ENTITY TestBitslice IS

(18) END ENTITY TestBitslice;

(19)

(20) ARCHITECTURE rtl TestBitslice OF TestBitslice IS
(21) SIGNAL DatalIn :t_ Dataln;

(22) SIGNAL coef :t _coef;

(23) SIGNAL DataOut:t DataOut;

(24) SIGNAL product:std logic vector(........ciuiiiiiiiiiiiineencencennns
(25) CONSTANT ZiP1:NATURAL:I= . eeeeennneeeeennneeeeannnneeennnnnneeens
(26) CONSTANT APh:NATURAL:I= . .cccceoceccccssosccscsssssscssssssscssscsssss
(27) BEGIN

(28) DataIn <= "0101", "0100" AFTER 10 ns; -- 1.25, 1.00 AFTER 10 ns
(29) coef <= "0101"; -- 1.25

(30) product <= coef * DatalIn; -- 1.5625, 1.25 AFTER 10 ns
(31) DataOut <= product (iPh DOWNTO iPl)iieeeeeecceenecccnncsannnss

(32) END ARCHITECTURE rtl TestBitslice;

Correspondences with chapter 2.3: fe=cCoefFract, fa-=cDatalnFract, fy=cDataOutFract,
We, Wd, Wp, Wy: cCoefWidth, cDataInWidth, cProdWidht, cDataOutWidth, respectively.

Exercises:

» Complete line (24) to get a product signal that fits to the multiplication of line (30).
» Compute iP/ und iPh in lines (25), (26) to fit the bit-slice operation of line (31).

» Extend line (31) to get the bit-slice by bit-vector easy rounding.

» Verify the product, bit-slice and rounding operation of lines (39), (49) by hand.

-11 -

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

S Summary

Binary, decimal and hexadecimal coding were presented as well as conversion techniques
between them, particularly when these number representations appearing fixed-point formats.
After a short glance on floating-point numbers rounding was considered and an easy way to
round bit vectors was presented. The tutorial finished with an example based on VHDL.

6 References

[1] IEEE standard 754, available: http://www.ieee.org/publications_standards/publications/subscriptions/prod/standards_overview.html.
[2] Available: http://de.wikipedia.org -> fixed-point

7 Appendix: Solutions to the Exercises
7.1 Introduction

7.2 Number Representations
7.2.1 Integral Numbers

7.2.2 Fixed Point Numerical Representation: The Q Number Format

Exercise: The bit string 110.1011 can be interpreted...

... as UQ3.4 format representing
1101011*2-4 = 107/16 = 6.6875

... as Q2.4 delivering
-(0010100+1) *2-%4 = -(0010101)*2* = -21/16 = -1.3125.

7.2.3 Multiplication of Fixed-Point Numbers

Exercises (for solutions see — chapter 8) :
Let coef have w, binary places, fc of them fractional. Signal data has waq binary places, fa
of them fractional. The product has

Wp=....We + Wa..... binary places, fp,=....fc + £a..... of them fractional.
Fig. 2.3 illustrates the multiplication of the coefficient coef withwe=..7...,fc=..4..
and the data sample data withwg=...5..., fa=...3....Theproduct prod has
Wp= ... We + Wag.= 7 +5 =12 binary places,

fo= .. fc+ fa =4 +3 =7 of them fractional.

We want to take y out of prod preserving the point. For all bit vectors the LSB has index 0.
InFig. 2.3 yhas wy=...7..., binary places fy=...5... of them fractional.

To apply the VHDL command y<=prod (iph DOWNTO ipl) we have to compute
ipl = ... fp - WY = 7 = 5 = 2
iph = .. ipl + Wy _l = 2 + 7 - l = 8

7.2.4 Binary to Hexadecimal to Binary Conversion

Exercise: convert to binary:
ABC.DEF;s = 1010 1011 1100 . 1101 1110 1111..

Exercise: convert to hex:

-12 -

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

1111 1110 1101.1100 1011 10102 = FED.CBAs¢

7.2.5 Decimal to Hexadecimal to Decimal Conversion

Exercise: convert to decimal (f=3) : ABC.DEF16 = 2748.8708496......
Exercise: convert to hex (f=3): 2748.87116 = ...ABC + 0.871.163 =
= ABC + 3566.79 = = ABC + 3567-163 = ABC + DEF-163 = ABC.DEF

7.2.6 Real-to-Binary Conversion

Exercises (for solutions see — chapter 8) :

Convert 1=3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.
3.14159 - (2* . 2°%) = (3.1415916) - 2°* = 50.26... - 274 => 50 - 274
5010 - 27 = 00110010, - 2% = 0011.0010;

Convert -n=-3.14159 into a signed bit vector with 8 binary places, 4 of them fractional.
-3.14159 - (2% - 2%) = (-3.14159:16) - 2°* = -50.26... - 2% => -50 - 2™
(-5010) + 2°* = ((~0011.0010)+1) - 274 = 11001110, - 24 = 1100.1110;

7.3 Rounding and Truncation

Table 3-1: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary bin rat. dec. rat. | decimal | truncated rounded | +0.1; truncated
bin | =dec | bin | =dec bin =dec
01.001 | 01001/2} 09/8 +1.125 | 01 +1 01 +1 01 +1
01.011 | 01011/2} 11/8 +1375 | 01 | 41 | 01 | +1 01 +1
01.100 | 01100/ 23 12/8 +1.500 | 01 | +1 | 10 | +2 10 +2
01.101 | 01101/2° 13/8 +1.625 | 01 | +1 | 10 | +2 10 +2
01.111 | 01111/2} 15/8 +1.875 | 01 | +1 | 10 | +2 10 +2
10.111 | 10111/23 -09/8 -1.125 10 +2 11 -1 11 -1
10.101 | 10101 /2° -11/8 -1.375 | 10 | +2 | 01 -1 11 -1
10.100 | 10100/2° -12/8 -1.500 | 10 -2 | 10 -2 11 -1
10.011 | 10011 /23 -13/8 | -1.6250 | 10 -2 | -2 -2 10 -2
10.001 | 10001 /23 -15/8 | -1.8750 | 10 -2 | -2 -2 10 -2

Table 3-2: Truncation, rounding and bit-vector easy rounding: (complete empty fields):

binary decimal decimal rounded +0.1; truncated | iden-
rational | fixed point bin =dec bin =dec tical

001.01111111 | +383 /2% | 1.49609375 001 +1 001 +1 yes
001.10000000 | +384/2® 1.5 010 +2 010 +2 yes
001.10000001 | +385/2% | 1.50390625 | 010 +2 010 +2 yes
110.10000001 | -384 /2% | -1.49609375| 111 -1 111 -1 yes
110.10000000 | -384 /2% -1.5 110 -2 111 -1 no
110.01111111 | +385/2% [-1.50390625 | 110 -2 110 -2 yes

-13 -

M. Schubert RE2 / PRE2 FSM Design for DSP Using Matlab Regensburg Univ. of Appl. Sciences

Correct: The difference between rounding and bit-vector easy rounding decreases with the
number of fractional bits.

7.4 Exercise Based on Executable VHDL

Solutions:

(24) SIGNAL product:std logic_vector (cDataInWidth+cCoefWidth-1 DOWNTO 0);
(25) CONSTANT iP1l:NATURAL:=cCoefFract+cDataInFract-cDataOutFract;

(26) CONSTANT iPh:NATURAL:=iPl+cDataOutWidth-1;

(31) DataOut <= product (iPh DOWNTO iPl) + product(iPl-1);

Verification of product and rounding by hand:

Factors:
DataIn = "01.01" , "01.00" AFTER 10 ns; -- = 1.5625 — 1.25
coef = "0l1.01"; -- =1.5

No rounding:

product = "0001.1001", "0001.0100" AFTER 10 ns; -- = 1.5625 — 1.25
DataOut = *0i1.100" , "™ 01.010" AFTER 10 ns; -- = 1.5 — 1.25
With bit-vector easy rounding:

product = "0001.1001", "0001.0100" AFTER 10 ns; -- = 1.5625 — 1.25
DataOut = "01.101" , " 01.010"™ AFTER 10 ns; -- = 1.625 — 1.25

-14 -

