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Abstract. This tutorial is intended to detail the use of integer and 
fixed point numbers when processing data samples with micro 
controllers or FPGAs. 

 
 

1 Introduction 
Using integers as fixed point numbers is an essential skill for micro controller and FPGA 
programming, particularly when digital signal processing (DSP) and A/D - D/A conversion 
are taken into account. 
 
 
The organization of this document is as follows:  

Chapter 1  introduction, 

Chapter 2  introduces different number representations and conversion algorithms between 
them,  

Chapter 3  discusses rounding techniques,  

Chapter 4  offers an exercise,  

Chapter 5  summarizes the tutorial,  

Chapter 6  gives some references and  

Chapter 7  the solutions to the exercises. 
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2 Number Representations   (See chapter 6.2 for solutions.) 
2.1 Integral Numbers 

There are two ways to interpret a bit vector as integral number: unsigned and signed, 
corresponding to the IEEE VHDL libraries std_logic_unsigned and std_logic_signed, resp. 
 
 Unsigned interpretation: A bit vector of w bits represents the integer range   0 ... 2w – 1. 

 Signed interpretation: A bit vector of w bits represents the int. range   –2w–1 ... +2w–1 – 1. 
 
 
2.2 Fixed Point Numerical Representation: The Q Number Format 

Unsigned: UQg.f  with g integral (deutsch: ganze) and f fractional bits.  Width  w=g+f. 
Signed:  Qg.f  with 1 sign bit plus g integral and f fraction bits.  Width  w=1+g+f. 
 
Example: 101.1001 can be interpreted as UQ3.4 format representing 1011001*2-4 = 89/16 = 
5.5625 or as Q2.4 delivering –(0100110+1) *2-4 = –(0100111) *2-4 = -39/16 = -2.4375. 
 
Exercise:  The bit string  110.1011 can be interpreted... 
 
... as UQ3.4 format representing  
 
 
.............................................................. 
 
... as Q2.4 delivering 
 
 
.............................................................. 
 

Unsigned: Range: 0 ≤ AU ≤ 
f

fg

2

12 

,  Resolution: r = 2-f = 
f2

1
. 

 

Singed  Range: 
f

fg

2

2 

  ≤ AS ≤ 
f

fg

2

12 

 ,    Resolution: r = 2-f = 
f2

1
. 

 
 
 You can append an arbitrary number of zeros after the point. 
 You can precede an arbitrary number of zeros before an unsigned number. 
 You can precede an arbitrary multiple of the sign bit before a signed number. 
 
Summation an subtraction of fixed-point numbers is easy as they can be treated like integer 
numbers when they are written such that the points are over each other. Example: 
 

Given numbers Unsigned treatment Signed treatment 
  11011011.11011 
      101.11101101 

  11011011.11011000 
 00000101.11101101 

  11011011.11011000 
 11111101.11101101 
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Table 2.2: Q-formats (as typical for micro controllers), w: total number of bits, r: resolution 

Format w g f min max r (resolution) 
UQ16 16 16 0 0 2^16 - r 1 
UQ.16 16 0 16 0 1 - r 2^-16 
Q15 16 15 0 -2^15 2^15 - r 1 
Q.15 16 0 15 -1 1 – r 2^-15 
UQ16.16 32 16 16 0 2^16 - r 2^-16 
Q15.16 32 15 16 -2^15 2^15 - r 2^-16 
 
Caution: Sometimes you will find the so-called Qf-Format with Q15 meaning Qg.15, g=?. 
Then we know about 1 sign bit and 15 fractional bits but an unknown number of integral bits. 
This causes uncertainty! Avoid it, even in a C program with all integers having 32 bits 
(because there also exist  short int (16 bits)  and  char (8 bits)  types in C). 
 
 You cannot mark the Q-format within the bit string. It’s a predefined arrangement of your 

design. 
 
 
2.3 Multiplication of Fixed-Point Numbers 

 
 
Fig. 2.3:  
Reducing the product length 
to the length of its factors 
with indices iph and ipl. 

coef

data

prod

0wc-1

wp-1 0iph

wd-1 0

wy-1

ipl

0

y

 

 
 
We compute prod = coef * data with coef and data having  wc and wd binary places, 
respectively, fc and fd of them fractional. Then prod has wp=wc+wd binary places, fp=fc+fd 
of them fractional.  
 
Mathematical proof: We can write   coef = icoef∙2-fc and data = idata∙2-fd  with ixxx  integral. 
Consequently, the product can be written as 
prod = coef ∙ data = icoef∙2-fc ∙ idata∙2-fd = icoef∙ idata∙2-(fc+fd). 

 
 
Reducing the length of products: 
 
Proof: We want to reduce the width of prod by taking result vector y out of it. Result y has wy 
bits in formatted as [U]Qgy.fy. 
 
Considering fractional bits only: 
The fractional part of product prod consists of bits fp-1...0.  
The fractional part of result y will consist of bits fy-1...0. 
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Preserving the point we get  y(fy-1 : 0) = p(fp-1 : fp-fy)   with lowest index  ipl = fp-fy. 
 
Considering integral bits also: 
As  y = y(wy-1 : 0)  its max. index is wy–1 larger than its min. index: iph = ipl + (wy-1). 
 
Consequently (formula to be used in exercise chapter 4): 
 

y = prod(iph : ipl)    with    ipl = fp-fy,    iph = ipl + wy-1  
 
 
 
Exercises (for solutions see → chapter 6) : 
 
Let coef have wc binary places, fc of them fractional. Signal data  has  wd binary places, fd 
of them fractional. The product has  
 
 
wp = ............... binary places,     fp = ............... of them fractional. 
 
 
 
Fig. 2.3 illustrates the multiplication of the coefficient  coef  with wc = ......, fc = .....  
 
 
and the data sample data with wd = .......,     fd = ........ The product  prod  has  
 
 
wp =  ............................................... binary places, 
 
 
fp =   ............................................ of them fractional. 
 
 
We want to take result vector y out of prod preserving the point. For all bit vectors the LSB 
has index 0. 
 
 
In Fig. 2.3  y has  wy = ......., binary places    fy = ....... of them fractional. 
 
 
To apply the VHDL command  y<=prod(iph DOWNTO ipl)  we have to compute  
 
 
ipl =  .......................................................... 
 
 
iph =  .......................................................... 
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2.4 Binary  Hexadecimal  Binary Conversion 

Table 2.4: Mapping decimal, hexadecimal and binary numbers 

Decimal 
number 

Hexadecimal 
Digit 

Bit vector  Decimal 
number 

Hexadecimal 
Digit 

Bit 
vector 

0 0 0000  8 8 1000 
1 1 0001  9 9 1001 
2 2 0010  10 A 1010 
3 3 0011  11 B 1011 
4 4 0100  12 C 1100 
5 5 0101  13 D 1101 
6 6 0110  14 E 1110 
7 7 0111  15 F 1111 

 
 
Hexadecimal numbers are easier to read and remember than bit vectors. Starting from the 
point bits are subdivided into packages of 4 bits and replaced by equivalent hex-digits.  
 
Example: 10100101101.0110101101012 = 101  0010  1101 . 0110  1011  01012 = 52D.6B516. 
 
Convert the hex-number back to a bit vector translating every hex-digit to a 4-bit string. 
 
Example: = 52D.6B516 => 101  0010  1101 . 0110  1011  01012. 
 
Exercise: convert to binary:  
 
ABC.DEF16 =  . 
 ................................................. 
 
Exercise: convert to hex:  
 
1111 1110 1101.1100 1011 10102  =   
 .............................. 
 

2.5 Decimal  Hexadecimal  Decimal Conversion 

Decide for the number of fractional hex-digits, fh, and multiply the decimal number with 16fh. 
If desired the decimal number can then be rounded or truncated. The resulting integral 
number is then converted to a hex-number. 
 
Example: We want to have fh=3 hexadecimal fractional digits.  

1234.56710  = 1234.56710 * (163*16-3) = 1234.56710 * 163 * 16-3 = 5 056 786.43210 * 16-3  

 ≈  5 056 78610 * 16-3 = 4D291216 * 16-3 = 4D2.91216 
 
Easier to compute might be the form separating integral and fractional parts:  

1234.56710  =123410 + 0.56710 = 4D216 +  0.56710* 163 * 16-3 = 4D216 + 2322.43210 * 16-3 

 ≈  4D216 + 232210 * 16-3 = 4D216 + 91216 * 16-3 = 4D2.91216 
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Remember: 123410 = (77*16) + 2 = ((4*16) + 13)*16 + 4 = 4*162 + 13*161 + 2*160 = 4D216. 
 
Back translation to decimal is performed by multiplying hex-digit on position m with 16m. 
 
Example: 4D2.91216 = 4*162 +13*161 + 2*160  +  9*16-1+ 1*16-2+  2*16-3 ≈ 1234.56689. 
 
Exercise: convert to decimal (f=3) : ABC.DEF16 = ......................... 
 
Exercise: convert to hex (f=3):  2748.87116 = ........................... 
 
............................................................  
 
 

2.6 Real  Binary Conversion 

Factors – like filter coefficients – are computed as real numbers and have to be converted to 
bit vectors. Let’s assume the number rVal=1.234 has to be converted to a bit string with 8 
binary places, 6 of them fractional. The example below shows a possible way to accomplish 
this. 
 
 
rVal = rVal ꞏ (1) = rVal ꞏ (26 ꞏ 2-6) = (rVal ꞏ 26) ꞏ 2-6 = (1.234 ꞏ 64) ꞏ 2-6 = 78.976 ꞏ 2-6  
iVal = round(rValꞏ26) ꞏ 2-6 = round(78.976) ꞏ 2-6 = 79 ꞏ 2-6 = 010011112 ꞏ 2-6 = 01.0011112. 
 
For the negative rVal2 = -rVal = -1.234 we obtain in the same way  rVal2 = -78.976 ꞏ 2-6 and 
iVal2 = round(rVal2ꞏ26) ꞏ 2-6 = round(-78.976) ꞏ 2-6 = -79 ꞏ 2-6 = 101100012 ꞏ 2-6 = 
10.1100012. 
 
Positive an negative numbers are distinguished by the first bit. Be careful to not set this bit 
accidentally by a too large positive number. The largest positive number for a signed 8-Bit 
representation is iValmax=27–1=127 and the largest negative number is iValmin=–27=–128. 
 
 
Exercises (for solutions see → chapter 8) : 
Convert π=3.14159 into a signed bit vector with 8 binary places, 4 of them fractional. 
 
 
.......................................................................... 
 
 
.......................................................................... 

 
 
Convert -π=-3.14159 into a signed bit vector with 8 binary places, 4 of them fractional. 
 
 
.......................................................................... 
 
 
.......................................................................... 
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2.7 Floating-Point Numbers 

Fig. 2.7: Floating-point data structure s exponent mantissa  

 
 
Table 2.7: IEEE 754 binary formats [1] 

Format Sign Exponent Mantissa Total number of bits Exponent bias 
Half 1 5 10 16 15 
Single 1 8 23 32 127 
Double 1 11 52 64 1023 
Quad 1 15 112 128 16383 
 
 
The floating point data structure has 1 sign bit s, e exponent bits and m mantissa bits. The 
number is computed from  
 
real_value = (-1)s x 2exponent – exponent_bias x mantissa 
 
The exponent is biased by (2e-1)-1 to obtain both positive and negative exponents.  
 
If possible, the mantissa is stored normalized i.e. with one bit before the point. Example: the 
number 101.1101 is stored as  1.011101 x 2+2.  
 
The number is said to be de-normalized if the MSB of the mantissa is 0 and  its fraction 0. 
 
Particular situations 
 ±0   (depending on the sign bit) : exponent = 0 and mantissa = 0. 
 ±  (depending on the sign bit) : exponent = 2e-1 (=all ones) and mantissa fraction =0 
 NaN  (Not a Number) :  exponent = 2e-1 (=all ones) and mantissa fraction 0 

 
Floating point numbers are well suited for multiplication and division, as 2A x 2B = 2A+B, but 
not for addition and subtraction, as for this operations it has be brought into a fixed-point like 
format. Typically, working with floating-point numbers is significantly more time consuming 
than working with fixed-point numbers. However, the range of floating-point numbers is 
significantly larger than that of fixed-point numbers. 
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3 Rounding and Truncation 
Truncation  
Truncating a number with integral part g and fractional part f (i.e. f<1): 
g.f truncates to g (, regardless whether g is positive or negative): 
Example:5.8 truncates to 5, -5.8 truncates to –5. 
 
Rounding Threshold 
The threshold for rounding is ½LSB with LSB being the least significant bit. For integral 
numbers LSB=1. With Base (or radix) B = 10, 2, 16 we get ½ B = 5, 1, 8, respectively. 
Consequently the numerical thresholds are  510-1=0.510 = 12-1=0.12 = 816-1=0.816. 
 
Rounding: 
This method corresponds to the C or Matlab expression  round(g.f)  for decimal numbers. 
Positive numbers:  g.f  rounds  to  g  when  f < 0.5  and to  g+1  when  f  0.5. 
Negative numbers:  g.f  rounds  to  g  when  f < 0.5  and to  g-1  when  f  0.5. 
 

Possible realization: 
+ For numbers ≥ 0 : rounded_number = g + f1  , with f1 being the first fractional bit. 
-  For numbers < 0 : rounded_number = -(g' + f1') with g'.f ' = -(g.f). 

 
Bit-Vector Easy Rounding Scheme: 
This method corresponds to the C or Matlab expression  floor(g.f+0.5)  for decimal numbers. 
 

Easy realization: bver_rounded_number = g + f1 with f1 being the first fractional bit. 
 
 
Exercise:  
Fill the empty fields in Table 3-1 to understand the differences between truncation, 
mathematical rounding and the bit-vector easy rounding presented above. The bit-strings are 
assumed ot be 5-bit signed numbers. 
 
 
Table 3-1: Truncation, rounding and bit-vector easy rounding: (complete empty fields): 

binary binary decimal decimal truncated rounded +0.12 truncated 
 rational rational  bin =dec bin =dec bin =dec 
          

01.001 0 1001 / 23 09 / 8 +1.125 01 +1 01 +1 01 +1 
01.011 0 1011 / 23 11 / 8 +1.375       
01.100 0 1100 / 23 12 / 8 +1.500       
01.101 0 1101 / 23 13 / 8 +1.625       
01.111 0 1111 / 23 15 / 8 +1.875       

          

10.111 1 0111 / 23 -09 / 8 -1.125 10 +2 11 -1 11 -1 
10.101 1 0101 / 23 -11 / 8 -1.375       
10.100 1 0100 / 23 -12 / 8 -1.500       
10.011 1 0011 / 23 -13 / 8 -1.6250       
10.001 1 0001 / 23 -15 / 8 -1.8750       
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Check with table 3-2 when rounding and bit-vector easy rounding obtains same or different 
results: 
 
 
Table 3-2: Truncation, rounding and bit-vector easy rounding: (complete empty fields): 

binary decimal  decimal rounded +0.12 truncated iden- 
 rational fixed point bin =dec bin =dec tical 
        

001.01111111 +383 / 28 1.49609375 001 +1 001 +1 yes 
001.10000000 +384 / 28 1.5      
001.10000001 +385 / 28 1.50390625      

        

110.10000001 -384 / 28 -1.49609375 111 -1 111 -1 yes 
110.10000000 -384 / 28 -1.5      
110.01111111 +385 / 28 -1.50390625      

        

 
 
What is correct?: The difference between rounding and bit-vector easy rounding increases / 
decreases with the number of fractional bits. 
 
 

 

Fig. 3:  Matlab plot. Top down: truncation, rounding, bit-vector easy rounding, 3-level 
quantization. Differences between the second and third line are in -n.5 only. 
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4 Exercise Based on Executable VHDL 
Listing 4: Code with gaps 

(1) LIBRARY ieee; USE ieee.std_logic_1164.ALL; 
(2) PACKAGE pk_filter IS 
(3)   CONSTANT cDataInWidth:POSITIVE:=4;   -- Input-Data BitWidth 
(4)   CONSTANT cDataInFract:POSITIVE:=2;   -- No of Input-Data fract. Bits 
(5)   CONSTANT cDataOutWidth:POSITIVE:=5; -- Output-Data BitWidth 
(6)   CONSTANT cDataOutFract:POSITIVE:=3; -- No of Output-Data fract Bits 
(7)   CONSTANT cCoefWidth:POSITIVE:=4;    -- Coefficient's BitWidth 
(8)   CONSTANT cCoefFract:POSITIVE:=2;    -- No of Coef's fractional Bits 
(9)   SUBTYPE  t_DataIn  IS std_logic_vector(cDataInWidth-1  DOWNTO 0); 
(10)   SUBTYPE  t_DataOut IS std_logic_vector(cDataOutWidth-1 DOWNTO 0); 
(11)   SUBTYPE  t_coef IS std_logic_vector(cCoefWidth-1 DOWNTO 0); 
(12) END PACKAGE pk_filter; 
(13)  
(14) LIBRARY ieee; USE ieee.std_logic_1164.ALL, 
(15)                  ieee.std_logic_signed."+", ieee.std_logic_signed."*"; 
(16) USE WORK.pk_filter.ALL; 
(17) ENTITY TestBitslice IS 
(18) END ENTITY TestBitslice; 
(19)  
(20) ARCHITECTURE rtl_TestBitslice OF TestBitslice IS 
(21)   SIGNAL DataIn :t_DataIn; 
(22)   SIGNAL coef   :t_coef; 
(23)   SIGNAL DataOut:t_DataOut; 

(24)   SIGNAL product:std_logic_vector(................................... 
 
..................................................................... 

(25)   CONSTANT iPl:NATURAL:= ............................................ 
 
..................................................................... 

(26)   CONSTANT iPh:NATURAL:= ............................................ 
 
..................................................................... 

(27) BEGIN 
(28)   DataIn  <= "0101", "0100" AFTER 10 ns; -- 1.25,   1.00 AFTER 10 ns 
(29)   coef    <= "0101";                     -- 1.25 
(30)   product <= coef * DataIn;              -- 1.5625, 1.25 AFTER 10 ns 

(31)   DataOut <= product(iPh DOWNTO iPl) ................................ 
 
 
..................................................................... 

(32) END ARCHITECTURE rtl_TestBitslice; 
 
 
Correspondences with chapter 2.3: fc=cCoefFract, fd=cDataInFract, fy=cDataOutFract,  
wc, wd, wp, wy: cCoefWidth, cDataInWidth, cProdWidht, cDataOutWidth, respectively. 
 
 
Exercises: 
 Complete line (24) to get a product signal that fits to the multiplication of line (30). 
 Compute iPl und iPh in lines (25), (26) to fit the bit-slice operation of line (31). 
 Extend line (31) to get the bit-slice by bit-vector easy rounding. 
 Verify the product, bit-slice and rounding operation of lines (39), (49) by hand. 
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5 Summary 
Binary, decimal and hexadecimal coding were presented as well as conversion techniques 
between them, particularly when these number representations appearing fixed-point formats. 
After a short glance on floating-point numbers rounding was considered and an easy way to 
round bit vectors was presented. The tutorial finished with an example based on VHDL. 
 
 

6 References 
[1] IEEE standard 754, available: http://www.ieee.org/publications_standards/publications/subscriptions/prod/standards_overview.html.  
[2] Available: http://de.wikipedia.org -> fixed-point 

 
 

7 Appendix: Solutions to the Exercises 
7.1 Introduction 

7.2 Number Representations 

7.2.1 Integral Numbers 

7.2.2 Fixed Point Numerical Representation: The Q Number Format 

Exercise:  The bit string  110.1011 can be interpreted... 
... as UQ3.4 format representing  
1101011*2-4 = 107/16 = 6.6875  
... as Q2.4 delivering 
–(0010100+1)*2-4 = –(0010101)*2-4 = -21/16 = -1.3125. 
 
7.2.3 Multiplication of Fixed-Point Numbers 

Exercises (for solutions see → chapter 8) : 
Let coef have wc binary places, fc of them fractional. Signal data  has  wd binary places, fd 
of them fractional. The product has  
wp = ....wc + wd..... binary places,     fp = ....fc + fd.....of them fractional. 
Fig. 2.3 illustrates the multiplication of the coefficient  coef  with wc = ..7..., fc = ..4..  
and the data sample data with wd = ...5...,     fd = ...3.... The product  prod  has  
wp =  ... wc + wd.= 7 + 5 = 12 ................. binary places, 
fp =   .. fc + fd = 4 + 3 = 7 ................... of them fractional. 
We want to take y out of prod preserving the point. For all bit vectors the LSB has index 0. 
In Fig. 2.3  y has  wy = ...7..., binary places    fy = ...5... of them fractional. 
To apply the VHDL command  y<=prod(iph DOWNTO ipl)  we have to compute  
ipl =  ... fp – wy = 7 - 5 = 2 ................................ 
iph =  ... ipl + wy –1 = 2 + 7 – 1 = 8 ........................ 
 
7.2.4 Binary to Hexadecimal to Binary Conversion 

Exercise: convert to binary:  
ABC.DEF16 =  1010 1011 1100 . 1101 1110 11112. 
Exercise: convert to hex:  
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1111 1110 1101.1100 1011 10102  =  FED.CBA16 
 
7.2.5 Decimal to Hexadecimal to Decimal Conversion 

Exercise: convert to decimal (f=3) : ABC.DEF16 = ......2748.8708496...... 
Exercise: convert to hex (f=3):  2748.87116 = ...ABC + 0.87116-3 = ...... 
= ABC + 3566.79 ≈ = ABC + 356716-3 = ABC + DEF16-3 = ABC.DEF  
 
7.2.6 Real-to-Binary Conversion 

Exercises (for solutions see → chapter 8) : 
Convert π=3.14159 into a signed bit vector with 8 binary places, 4 of them fractional. 
3.14159  (24  2-4) = (3.1415916)  2-4 = 50.26...  2-4 => 50  2-4  
5010  2-4 = 001100102  2-4 = 0011.00102 
 
Convert -π=-3.14159 into a signed bit vector with 8 binary places, 4 of them fractional. 
-3.14159  (24  2-4) = (-3.1415916)  2-4 = -50.26...  2-4 => -50  2-4  
(-5010)  2-4 = ((~0011.00102)+1)  2-4 = 110011102  2-4 = 1100.11102 
 
 

7.3 Rounding and Truncation 
Table 3-1: Truncation, rounding and bit-vector easy rounding: (complete empty fields): 

binary bin rat. dec. rat. decimal truncated rounded +0.12 truncated 
    bin =dec bin =dec bin =dec 
          

01.001 0 1001 / 23 09 / 8 +1.125 01 +1 01 +1 01 +1 
01.011 0 1011 / 23 11 / 8 +1.375 01 +1 01 +1 01 +1 
01.100 0 1100 / 23 12 / 8 +1.500 01 +1 10 +2 10 +2 
01.101 0 1101 / 23 13 / 8 +1.625 01 +1 10 +2 10 +2 
01.111 0 1111 / 23 15 / 8 +1.875 01 +1 10 +2 10 +2 

          

10.111 1 0111 / 23 -09 / 8 -1.125 10 +2 11 -1 11 -1 
10.101 1 0101 / 23 -11 / 8 -1.375 10 +2 01 -1 11 -1 
10.100 1 0100 / 23 -12 / 8 -1.500 10 -2 10 -2 11 -1 
10.011 1 0011 / 23 -13 / 8 -1.6250 10 -2 -2 -2 10 -2 
10.001 1 0001 / 23 -15 / 8 -1.8750 10 -2 -2 -2 10 -2 

          

 
Table 3-2: Truncation, rounding and bit-vector easy rounding: (complete empty fields): 

binary decimal  decimal rounded +0.12 truncated iden- 
 rational fixed point bin =dec bin =dec tical 
        

001.01111111 +383 / 28 1.49609375 001 +1 001 +1 yes 
001.10000000 +384 / 28 1.5 010 +2 010 +2 yes 
001.10000001 +385 / 28 1.50390625 010 +2 010 +2 yes 

        

110.10000001 -384 / 28 -1.49609375 111 -1 111 -1 yes 
110.10000000 -384 / 28 -1.5 110 -2 111 -1 no 
110.01111111 +385 / 28 -1.50390625 110 -2 110 -2 yes 
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Correct: The difference between rounding and bit-vector easy rounding decreases with the 
number of fractional bits. 
 
 

7.4 Exercise Based on Executable VHDL 
Solutions: 
(24)   SIGNAL product:std_logic_vector(cDataInWidth+cCoefWidth-1 DOWNTO 0); 
(25)   CONSTANT iPl:NATURAL:=cCoefFract+cDataInFract-cDataOutFract; 
(26)   CONSTANT iPh:NATURAL:=iPl+cDataOutWidth-1; 
(31)   DataOut <= product(iPh DOWNTO iPl) + product(iPl-1); 
 
 
Verification of product and rounding by hand: 

Factors: 
DataIn  =   "01.01"  ,  "01.00"    AFTER 10 ns; -- = 1.5625  1.25 
coef    =   "01.01";                            -- = 1.5 
 
No rounding: 
product = "0001.1001", "0001.0100" AFTER 10 ns; -- = 1.5625  1.25 
DataOut =   "01.100" , "  01.010"  AFTER 10 ns; -- = 1.5     1.25 
 
With bit-vector easy rounding: 
product = "0001.1001", "0001.0100" AFTER 10 ns; -- = 1.5625  1.25 
DataOut =   "01.101" , "  01.010"  AFTER 10 ns; -- = 1.625   1.25 
 
 


