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Abstract. This tutorial is intended to detail the use of integer and 
fixed point numbers when processing data samples with micro 
controllers or FPGAs. 

 
 

1 Introduction 
Using integers as fixed point numbers is an essential skill for micro controller and FPGA 
programming, particularly when digital signal processing (DSP) and A/D - D/A conversion 
are taken into account. 
 
 
The organization of this document is as follows:  

Chapter 1  introduction, 

Chapter 2  introduces different number representations and conversion algorithms between 
them,  

Chapter 3  discusses rounding techniques,  

Chapter 4  offers an exercise,  

Chapter 5  summarizes the tutorial,  

Chapter 6  gives some references and  

Chapter 7  the solutions to the exercises. 
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2 Number Representations   (See chapter 6.2 for solutions.) 
2.1 Integral Numbers 

There are two ways to interpret a bit vector as integral number: unsigned and signed, 
corresponding to the IEEE VHDL libraries std_logic_unsigned and std_logic_signed, resp. 
 
 Unsigned interpretation: A bit vector of w bits represents the integer range   0 ... 2w – 1. 

 Signed interpretation: A bit vector of w bits represents the int. range   –2w–1 ... +2w–1 – 1. 
 
 
2.2 Fixed Point Numerical Representation: The Q Number Format 

Unsigned: UQg.f  with g integral (deutsch: ganze) and f fractional bits.  Width  w=g+f. 
Signed:  Qg.f  with 1 sign bit plus g integral and f fraction bits.  Width  w=1+g+f. 
 
Example: 101.1001 can be interpreted as UQ3.4 format representing 1011001*2-4 = 89/16 = 
5.5625 or as Q2.4 delivering –(0100110+1) *2-4 = –(0100111) *2-4 = -39/16 = -2.4375. 
 
Exercise:  The bit string  110.1011 can be interpreted... 
 
... as UQ3.4 format representing  
 
 
.............................................................. 
 
... as Q2.4 delivering 
 
 
.............................................................. 
 

Unsigned: Range: 0 ≤ AU ≤ 
f

fg

2

12 

,  Resolution: r = 2-f = 
f2

1
. 

 

Singed  Range: 
f

fg

2

2 

  ≤ AS ≤ 
f

fg

2

12 

 ,    Resolution: r = 2-f = 
f2

1
. 

 
 
 You can append an arbitrary number of zeros after the point. 
 You can precede an arbitrary number of zeros before an unsigned number. 
 You can precede an arbitrary multiple of the sign bit before a signed number. 
 
Summation an subtraction of fixed-point numbers is easy as they can be treated like integer 
numbers when they are written such that the points are over each other. Example: 
 

Given numbers Unsigned treatment Signed treatment 
  11011011.11011 
      101.11101101 

  11011011.11011000 
 00000101.11101101 

  11011011.11011000 
 11111101.11101101 
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Table 2.2: Q-formats (as typical for micro controllers), w: total number of bits, r: resolution 

Format w g f min max r (resolution) 
UQ16 16 16 0 0 2^16 - r 1 
UQ.16 16 0 16 0 1 - r 2^-16 
Q15 16 15 0 -2^15 2^15 - r 1 
Q.15 16 0 15 -1 1 – r 2^-15 
UQ16.16 32 16 16 0 2^16 - r 2^-16 
Q15.16 32 15 16 -2^15 2^15 - r 2^-16 
 
Caution: Sometimes you will find the so-called Qf-Format with Q15 meaning Qg.15, g=?. 
Then we know about 1 sign bit and 15 fractional bits but an unknown number of integral bits. 
This causes uncertainty! Avoid it, even in a C program with all integers having 32 bits 
(because there also exist  short int (16 bits)  and  char (8 bits)  types in C). 
 
 You cannot mark the Q-format within the bit string. It’s a predefined arrangement of your 

design. 
 
 
2.3 Multiplication of Fixed-Point Numbers 

 
 
Fig. 2.3:  
Reducing the product length 
to the length of its factors 
with indices iph and ipl. 

coef

data

prod

0wc-1

wp-1 0iph

wd-1 0

wy-1

ipl

0

y

 

 
 
We compute prod = coef * data with coef and data having  wc and wd binary places, 
respectively, fc and fd of them fractional. Then prod has wp=wc+wd binary places, fp=fc+fd 
of them fractional.  
 
Mathematical proof: We can write   coef = icoef∙2-fc and data = idata∙2-fd  with ixxx  integral. 
Consequently, the product can be written as 
prod = coef ∙ data = icoef∙2-fc ∙ idata∙2-fd = icoef∙ idata∙2-(fc+fd). 

 
 
Reducing the length of products: 
 
Proof: We want to reduce the width of prod by taking result vector y out of it. Result y has wy 
bits in formatted as [U]Qgy.fy. 
 
Considering fractional bits only: 
The fractional part of product prod consists of bits fp-1...0.  
The fractional part of result y will consist of bits fy-1...0. 
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Preserving the point we get  y(fy-1 : 0) = p(fp-1 : fp-fy)   with lowest index  ipl = fp-fy. 
 
Considering integral bits also: 
As  y = y(wy-1 : 0)  its max. index is wy–1 larger than its min. index: iph = ipl + (wy-1). 
 
Consequently (formula to be used in exercise chapter 4): 
 

y = prod(iph : ipl)    with    ipl = fp-fy,    iph = ipl + wy-1  
 
 
 
Exercises (for solutions see → chapter 6) : 
 
Let coef have wc binary places, fc of them fractional. Signal data  has  wd binary places, fd 
of them fractional. The product has  
 
 
wp = ............... binary places,     fp = ............... of them fractional. 
 
 
 
Fig. 2.3 illustrates the multiplication of the coefficient  coef  with wc = ......, fc = .....  
 
 
and the data sample data with wd = .......,     fd = ........ The product  prod  has  
 
 
wp =  ............................................... binary places, 
 
 
fp =   ............................................ of them fractional. 
 
 
We want to take result vector y out of prod preserving the point. For all bit vectors the LSB 
has index 0. 
 
 
In Fig. 2.3  y has  wy = ......., binary places    fy = ....... of them fractional. 
 
 
To apply the VHDL command  y<=prod(iph DOWNTO ipl)  we have to compute  
 
 
ipl =  .......................................................... 
 
 
iph =  .......................................................... 
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2.4 Binary  Hexadecimal  Binary Conversion 

Table 2.4: Mapping decimal, hexadecimal and binary numbers 

Decimal 
number 

Hexadecimal 
Digit 

Bit vector  Decimal 
number 

Hexadecimal 
Digit 

Bit 
vector 

0 0 0000  8 8 1000 
1 1 0001  9 9 1001 
2 2 0010  10 A 1010 
3 3 0011  11 B 1011 
4 4 0100  12 C 1100 
5 5 0101  13 D 1101 
6 6 0110  14 E 1110 
7 7 0111  15 F 1111 

 
 
Hexadecimal numbers are easier to read and remember than bit vectors. Starting from the 
point bits are subdivided into packages of 4 bits and replaced by equivalent hex-digits.  
 
Example: 10100101101.0110101101012 = 101  0010  1101 . 0110  1011  01012 = 52D.6B516. 
 
Convert the hex-number back to a bit vector translating every hex-digit to a 4-bit string. 
 
Example: = 52D.6B516 => 101  0010  1101 . 0110  1011  01012. 
 
Exercise: convert to binary:  
 
ABC.DEF16 =  . 
 ................................................. 
 
Exercise: convert to hex:  
 
1111 1110 1101.1100 1011 10102  =   
 .............................. 
 

2.5 Decimal  Hexadecimal  Decimal Conversion 

Decide for the number of fractional hex-digits, fh, and multiply the decimal number with 16fh. 
If desired the decimal number can then be rounded or truncated. The resulting integral 
number is then converted to a hex-number. 
 
Example: We want to have fh=3 hexadecimal fractional digits.  

1234.56710  = 1234.56710 * (163*16-3) = 1234.56710 * 163 * 16-3 = 5 056 786.43210 * 16-3  

 ≈  5 056 78610 * 16-3 = 4D291216 * 16-3 = 4D2.91216 
 
Easier to compute might be the form separating integral and fractional parts:  

1234.56710  =123410 + 0.56710 = 4D216 +  0.56710* 163 * 16-3 = 4D216 + 2322.43210 * 16-3 

 ≈  4D216 + 232210 * 16-3 = 4D216 + 91216 * 16-3 = 4D2.91216 
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Remember: 123410 = (77*16) + 2 = ((4*16) + 13)*16 + 4 = 4*162 + 13*161 + 2*160 = 4D216. 
 
Back translation to decimal is performed by multiplying hex-digit on position m with 16m. 
 
Example: 4D2.91216 = 4*162 +13*161 + 2*160  +  9*16-1+ 1*16-2+  2*16-3 ≈ 1234.56689. 
 
Exercise: convert to decimal (f=3) : ABC.DEF16 = ......................... 
 
Exercise: convert to hex (f=3):  2748.87116 = ........................... 
 
............................................................  
 
 

2.6 Real  Binary Conversion 

Factors – like filter coefficients – are computed as real numbers and have to be converted to 
bit vectors. Let’s assume the number rVal=1.234 has to be converted to a bit string with 8 
binary places, 6 of them fractional. The example below shows a possible way to accomplish 
this. 
 
 
rVal = rVal ꞏ (1) = rVal ꞏ (26 ꞏ 2-6) = (rVal ꞏ 26) ꞏ 2-6 = (1.234 ꞏ 64) ꞏ 2-6 = 78.976 ꞏ 2-6  
iVal = round(rValꞏ26) ꞏ 2-6 = round(78.976) ꞏ 2-6 = 79 ꞏ 2-6 = 010011112 ꞏ 2-6 = 01.0011112. 
 
For the negative rVal2 = -rVal = -1.234 we obtain in the same way  rVal2 = -78.976 ꞏ 2-6 and 
iVal2 = round(rVal2ꞏ26) ꞏ 2-6 = round(-78.976) ꞏ 2-6 = -79 ꞏ 2-6 = 101100012 ꞏ 2-6 = 
10.1100012. 
 
Positive an negative numbers are distinguished by the first bit. Be careful to not set this bit 
accidentally by a too large positive number. The largest positive number for a signed 8-Bit 
representation is iValmax=27–1=127 and the largest negative number is iValmin=–27=–128. 
 
 
Exercises (for solutions see → chapter 8) : 
Convert π=3.14159 into a signed bit vector with 8 binary places, 4 of them fractional. 
 
 
.......................................................................... 
 
 
.......................................................................... 

 
 
Convert -π=-3.14159 into a signed bit vector with 8 binary places, 4 of them fractional. 
 
 
.......................................................................... 
 
 
.......................................................................... 
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2.7 Floating-Point Numbers 

Fig. 2.7: Floating-point data structure s exponent mantissa  

 
 
Table 2.7: IEEE 754 binary formats [1] 

Format Sign Exponent Mantissa Total number of bits Exponent bias 
Half 1 5 10 16 15 
Single 1 8 23 32 127 
Double 1 11 52 64 1023 
Quad 1 15 112 128 16383 
 
 
The floating point data structure has 1 sign bit s, e exponent bits and m mantissa bits. The 
number is computed from  
 
real_value = (-1)s x 2exponent – exponent_bias x mantissa 
 
The exponent is biased by (2e-1)-1 to obtain both positive and negative exponents.  
 
If possible, the mantissa is stored normalized i.e. with one bit before the point. Example: the 
number 101.1101 is stored as  1.011101 x 2+2.  
 
The number is said to be de-normalized if the MSB of the mantissa is 0 and  its fraction 0. 
 
Particular situations 
 ±0   (depending on the sign bit) : exponent = 0 and mantissa = 0. 
 ±  (depending on the sign bit) : exponent = 2e-1 (=all ones) and mantissa fraction =0 
 NaN  (Not a Number) :  exponent = 2e-1 (=all ones) and mantissa fraction 0 

 
Floating point numbers are well suited for multiplication and division, as 2A x 2B = 2A+B, but 
not for addition and subtraction, as for this operations it has be brought into a fixed-point like 
format. Typically, working with floating-point numbers is significantly more time consuming 
than working with fixed-point numbers. However, the range of floating-point numbers is 
significantly larger than that of fixed-point numbers. 
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3 Rounding and Truncation 
Truncation  
Truncating a number with integral part g and fractional part f (i.e. f<1): 
g.f truncates to g (, regardless whether g is positive or negative): 
Example:5.8 truncates to 5, -5.8 truncates to –5. 
 
Rounding Threshold 
The threshold for rounding is ½LSB with LSB being the least significant bit. For integral 
numbers LSB=1. With Base (or radix) B = 10, 2, 16 we get ½ B = 5, 1, 8, respectively. 
Consequently the numerical thresholds are  510-1=0.510 = 12-1=0.12 = 816-1=0.816. 
 
Rounding: 
This method corresponds to the C or Matlab expression  round(g.f)  for decimal numbers. 
Positive numbers:  g.f  rounds  to  g  when  f < 0.5  and to  g+1  when  f  0.5. 
Negative numbers:  g.f  rounds  to  g  when  f < 0.5  and to  g-1  when  f  0.5. 
 

Possible realization: 
+ For numbers ≥ 0 : rounded_number = g + f1  , with f1 being the first fractional bit. 
-  For numbers < 0 : rounded_number = -(g' + f1') with g'.f ' = -(g.f). 

 
Bit-Vector Easy Rounding Scheme: 
This method corresponds to the C or Matlab expression  floor(g.f+0.5)  for decimal numbers. 
 

Easy realization: bver_rounded_number = g + f1 with f1 being the first fractional bit. 
 
 
Exercise:  
Fill the empty fields in Table 3-1 to understand the differences between truncation, 
mathematical rounding and the bit-vector easy rounding presented above. The bit-strings are 
assumed ot be 5-bit signed numbers. 
 
 
Table 3-1: Truncation, rounding and bit-vector easy rounding: (complete empty fields): 

binary binary decimal decimal truncated rounded +0.12 truncated 
 rational rational  bin =dec bin =dec bin =dec 
          

01.001 0 1001 / 23 09 / 8 +1.125 01 +1 01 +1 01 +1 
01.011 0 1011 / 23 11 / 8 +1.375       
01.100 0 1100 / 23 12 / 8 +1.500       
01.101 0 1101 / 23 13 / 8 +1.625       
01.111 0 1111 / 23 15 / 8 +1.875       

          

10.111 1 0111 / 23 -09 / 8 -1.125 10 +2 11 -1 11 -1 
10.101 1 0101 / 23 -11 / 8 -1.375       
10.100 1 0100 / 23 -12 / 8 -1.500       
10.011 1 0011 / 23 -13 / 8 -1.6250       
10.001 1 0001 / 23 -15 / 8 -1.8750       
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Check with table 3-2 when rounding and bit-vector easy rounding obtains same or different 
results: 
 
 
Table 3-2: Truncation, rounding and bit-vector easy rounding: (complete empty fields): 

binary decimal  decimal rounded +0.12 truncated iden- 
 rational fixed point bin =dec bin =dec tical 
        

001.01111111 +383 / 28 1.49609375 001 +1 001 +1 yes 
001.10000000 +384 / 28 1.5      
001.10000001 +385 / 28 1.50390625      

        

110.10000001 -384 / 28 -1.49609375 111 -1 111 -1 yes 
110.10000000 -384 / 28 -1.5      
110.01111111 +385 / 28 -1.50390625      

        

 
 
What is correct?: The difference between rounding and bit-vector easy rounding increases / 
decreases with the number of fractional bits. 
 
 

 

Fig. 3:  Matlab plot. Top down: truncation, rounding, bit-vector easy rounding, 3-level 
quantization. Differences between the second and third line are in -n.5 only. 
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4 Exercise Based on Executable VHDL 
Listing 4: Code with gaps 

(1) LIBRARY ieee; USE ieee.std_logic_1164.ALL; 
(2) PACKAGE pk_filter IS 
(3)   CONSTANT cDataInWidth:POSITIVE:=4;   -- Input-Data BitWidth 
(4)   CONSTANT cDataInFract:POSITIVE:=2;   -- No of Input-Data fract. Bits 
(5)   CONSTANT cDataOutWidth:POSITIVE:=5; -- Output-Data BitWidth 
(6)   CONSTANT cDataOutFract:POSITIVE:=3; -- No of Output-Data fract Bits 
(7)   CONSTANT cCoefWidth:POSITIVE:=4;    -- Coefficient's BitWidth 
(8)   CONSTANT cCoefFract:POSITIVE:=2;    -- No of Coef's fractional Bits 
(9)   SUBTYPE  t_DataIn  IS std_logic_vector(cDataInWidth-1  DOWNTO 0); 
(10)   SUBTYPE  t_DataOut IS std_logic_vector(cDataOutWidth-1 DOWNTO 0); 
(11)   SUBTYPE  t_coef IS std_logic_vector(cCoefWidth-1 DOWNTO 0); 
(12) END PACKAGE pk_filter; 
(13)  
(14) LIBRARY ieee; USE ieee.std_logic_1164.ALL, 
(15)                  ieee.std_logic_signed."+", ieee.std_logic_signed."*"; 
(16) USE WORK.pk_filter.ALL; 
(17) ENTITY TestBitslice IS 
(18) END ENTITY TestBitslice; 
(19)  
(20) ARCHITECTURE rtl_TestBitslice OF TestBitslice IS 
(21)   SIGNAL DataIn :t_DataIn; 
(22)   SIGNAL coef   :t_coef; 
(23)   SIGNAL DataOut:t_DataOut; 

(24)   SIGNAL product:std_logic_vector(................................... 
 
..................................................................... 

(25)   CONSTANT iPl:NATURAL:= ............................................ 
 
..................................................................... 

(26)   CONSTANT iPh:NATURAL:= ............................................ 
 
..................................................................... 

(27) BEGIN 
(28)   DataIn  <= "0101", "0100" AFTER 10 ns; -- 1.25,   1.00 AFTER 10 ns 
(29)   coef    <= "0101";                     -- 1.25 
(30)   product <= coef * DataIn;              -- 1.5625, 1.25 AFTER 10 ns 

(31)   DataOut <= product(iPh DOWNTO iPl) ................................ 
 
 
..................................................................... 

(32) END ARCHITECTURE rtl_TestBitslice; 
 
 
Correspondences with chapter 2.3: fc=cCoefFract, fd=cDataInFract, fy=cDataOutFract,  
wc, wd, wp, wy: cCoefWidth, cDataInWidth, cProdWidht, cDataOutWidth, respectively. 
 
 
Exercises: 
 Complete line (24) to get a product signal that fits to the multiplication of line (30). 
 Compute iPl und iPh in lines (25), (26) to fit the bit-slice operation of line (31). 
 Extend line (31) to get the bit-slice by bit-vector easy rounding. 
 Verify the product, bit-slice and rounding operation of lines (39), (49) by hand. 
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5 Summary 
Binary, decimal and hexadecimal coding were presented as well as conversion techniques 
between them, particularly when these number representations appearing fixed-point formats. 
After a short glance on floating-point numbers rounding was considered and an easy way to 
round bit vectors was presented. The tutorial finished with an example based on VHDL. 
 
 

6 References 
[1] IEEE standard 754, available: http://www.ieee.org/publications_standards/publications/subscriptions/prod/standards_overview.html.  
[2] Available: http://de.wikipedia.org -> fixed-point 

 
 

7 Appendix: Solutions to the Exercises 
7.1 Introduction 

7.2 Number Representations 

7.2.1 Integral Numbers 

7.2.2 Fixed Point Numerical Representation: The Q Number Format 

Exercise:  The bit string  110.1011 can be interpreted... 
... as UQ3.4 format representing  
1101011*2-4 = 107/16 = 6.6875  
... as Q2.4 delivering 
–(0010100+1)*2-4 = –(0010101)*2-4 = -21/16 = -1.3125. 
 
7.2.3 Multiplication of Fixed-Point Numbers 

Exercises (for solutions see → chapter 8) : 
Let coef have wc binary places, fc of them fractional. Signal data  has  wd binary places, fd 
of them fractional. The product has  
wp = ....wc + wd..... binary places,     fp = ....fc + fd.....of them fractional. 
Fig. 2.3 illustrates the multiplication of the coefficient  coef  with wc = ..7..., fc = ..4..  
and the data sample data with wd = ...5...,     fd = ...3.... The product  prod  has  
wp =  ... wc + wd.= 7 + 5 = 12 ................. binary places, 
fp =   .. fc + fd = 4 + 3 = 7 ................... of them fractional. 
We want to take y out of prod preserving the point. For all bit vectors the LSB has index 0. 
In Fig. 2.3  y has  wy = ...7..., binary places    fy = ...5... of them fractional. 
To apply the VHDL command  y<=prod(iph DOWNTO ipl)  we have to compute  
ipl =  ... fp – wy = 7 - 5 = 2 ................................ 
iph =  ... ipl + wy –1 = 2 + 7 – 1 = 8 ........................ 
 
7.2.4 Binary to Hexadecimal to Binary Conversion 

Exercise: convert to binary:  
ABC.DEF16 =  1010 1011 1100 . 1101 1110 11112. 
Exercise: convert to hex:  
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1111 1110 1101.1100 1011 10102  =  FED.CBA16 
 
7.2.5 Decimal to Hexadecimal to Decimal Conversion 

Exercise: convert to decimal (f=3) : ABC.DEF16 = ......2748.8708496...... 
Exercise: convert to hex (f=3):  2748.87116 = ...ABC + 0.87116-3 = ...... 
= ABC + 3566.79 ≈ = ABC + 356716-3 = ABC + DEF16-3 = ABC.DEF  
 
7.2.6 Real-to-Binary Conversion 

Exercises (for solutions see → chapter 8) : 
Convert π=3.14159 into a signed bit vector with 8 binary places, 4 of them fractional. 
3.14159  (24  2-4) = (3.1415916)  2-4 = 50.26...  2-4 => 50  2-4  
5010  2-4 = 001100102  2-4 = 0011.00102 
 
Convert -π=-3.14159 into a signed bit vector with 8 binary places, 4 of them fractional. 
-3.14159  (24  2-4) = (-3.1415916)  2-4 = -50.26...  2-4 => -50  2-4  
(-5010)  2-4 = ((~0011.00102)+1)  2-4 = 110011102  2-4 = 1100.11102 
 
 

7.3 Rounding and Truncation 
Table 3-1: Truncation, rounding and bit-vector easy rounding: (complete empty fields): 

binary bin rat. dec. rat. decimal truncated rounded +0.12 truncated 
    bin =dec bin =dec bin =dec 
          

01.001 0 1001 / 23 09 / 8 +1.125 01 +1 01 +1 01 +1 
01.011 0 1011 / 23 11 / 8 +1.375 01 +1 01 +1 01 +1 
01.100 0 1100 / 23 12 / 8 +1.500 01 +1 10 +2 10 +2 
01.101 0 1101 / 23 13 / 8 +1.625 01 +1 10 +2 10 +2 
01.111 0 1111 / 23 15 / 8 +1.875 01 +1 10 +2 10 +2 

          

10.111 1 0111 / 23 -09 / 8 -1.125 10 +2 11 -1 11 -1 
10.101 1 0101 / 23 -11 / 8 -1.375 10 +2 01 -1 11 -1 
10.100 1 0100 / 23 -12 / 8 -1.500 10 -2 10 -2 11 -1 
10.011 1 0011 / 23 -13 / 8 -1.6250 10 -2 -2 -2 10 -2 
10.001 1 0001 / 23 -15 / 8 -1.8750 10 -2 -2 -2 10 -2 

          

 
Table 3-2: Truncation, rounding and bit-vector easy rounding: (complete empty fields): 

binary decimal  decimal rounded +0.12 truncated iden- 
 rational fixed point bin =dec bin =dec tical 
        

001.01111111 +383 / 28 1.49609375 001 +1 001 +1 yes 
001.10000000 +384 / 28 1.5 010 +2 010 +2 yes 
001.10000001 +385 / 28 1.50390625 010 +2 010 +2 yes 

        

110.10000001 -384 / 28 -1.49609375 111 -1 111 -1 yes 
110.10000000 -384 / 28 -1.5 110 -2 111 -1 no 
110.01111111 +385 / 28 -1.50390625 110 -2 110 -2 yes 
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Correct: The difference between rounding and bit-vector easy rounding decreases with the 
number of fractional bits. 
 
 

7.4 Exercise Based on Executable VHDL 
Solutions: 
(24)   SIGNAL product:std_logic_vector(cDataInWidth+cCoefWidth-1 DOWNTO 0); 
(25)   CONSTANT iPl:NATURAL:=cCoefFract+cDataInFract-cDataOutFract; 
(26)   CONSTANT iPh:NATURAL:=iPl+cDataOutWidth-1; 
(31)   DataOut <= product(iPh DOWNTO iPl) + product(iPl-1); 
 
 
Verification of product and rounding by hand: 

Factors: 
DataIn  =   "01.01"  ,  "01.00"    AFTER 10 ns; -- = 1.5625  1.25 
coef    =   "01.01";                            -- = 1.5 
 
No rounding: 
product = "0001.1001", "0001.0100" AFTER 10 ns; -- = 1.5625  1.25 
DataOut =   "01.100" , "  01.010"  AFTER 10 ns; -- = 1.5     1.25 
 
With bit-vector easy rounding: 
product = "0001.1001", "0001.0100" AFTER 10 ns; -- = 1.5625  1.25 
DataOut =   "01.101" , "  01.010"  AFTER 10 ns; -- = 1.625   1.25 
 
 


