

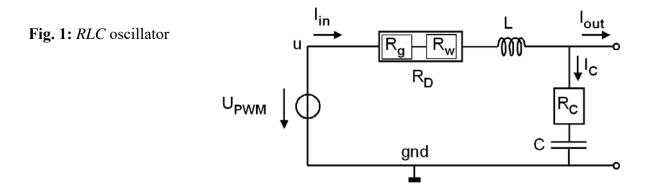
OSTBAYERISCHE TECHNISCHE HOCHSCHULE REGENSBURG

ELEKTRO- UND INFORMATIONSTECHNIK

Considering Input and Output Impedances

Martin J. W. Schubert

Electronics Laboratory, Regensburg University of Applied Sciences, Regensburg


Considering Input and Output Impedances

Abstract. This document illustrates how to cope with input and output (I/O) impedances.

1 Introduction

1.1 Motivation

It is important to consider I/O impedances of instrumentation. The *RLC* oscillator in Fig. 1 for example is typically computed as function of the capacitor's equivalent series resistor and the wire resistor of the coil, represented by R_C and R_w in Fig. 1, respectively, which are typically in the range of $\leq 0.1\Omega$. Consequently, the dominating resistor in this configuration is the output impedance of the signal source, which is typically $R_g = 50\Omega$ if a waveform generator is employed. In addition, monitor units may have impact on measured results.

1.2 Outline

The organization of this communication is as follows: Section 1 introduces into this document Section 2 presents fundamental equations Section 3 copes with output impedances and Section 4 deals with input impedances, while Section 5 concludes this document and Section 6 offers some references

2 Fundamentals

The voltage divider in Fig. 2 delivers for output voltage U_o and source voltage U_s

$$\alpha = \frac{U_o}{U_s} = \frac{Z_2}{Z_1 + Z_2}$$
(1.1)

and consequently

 $Z_1 = \frac{1 - \alpha}{\alpha} Z_2 \tag{1.2}$

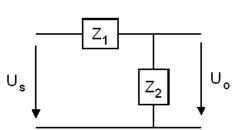


Fig. 2: voltage divider

3 Measuring Output Impedances

3.1 DC Output Impedance

The voltage divider in Fig. 1 delivers for output voltage U_o and source voltage U_s

$$\alpha = \frac{U_o}{U_s} = \frac{R_L}{R_{out} + Z_L} \qquad (2.1)$$

and consequently

$$R_o = \frac{1 - \alpha}{\alpha} R_L \tag{2.2}$$

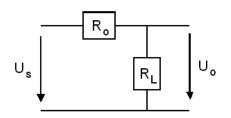


Fig. 3.1: voltage divider

Step 1: Measure U_s via $U_o = U_s$ using $R_L \rightarrow \infty$, Step 2: Measure U_s with a load resistor R_L with similar size as R_o , Step 3: Compute α according to (2.1), Step 4: Compute R_o according to (2.1).

3.2 AC Output Impedance

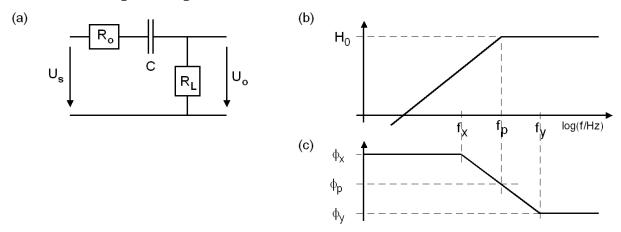


Fig. 3.2: (a) schematic, (b) amplitude- und (c) phase-diagramm.

Its transfer function is

and

and

$$H(s) = \frac{U_o(s)}{U_s(s)} = \frac{H_\infty}{1 + s / \omega_p}$$
(2.3)
$$\omega_p = \frac{1}{R_{oL}C} \Leftrightarrow f_p = \frac{1}{2\pi R_{oL}C}$$
(2.5)

with

$$H_{\infty} = \frac{R_L}{R_o + R_L} \tag{2.6}$$

4 Measuring Input Impedances

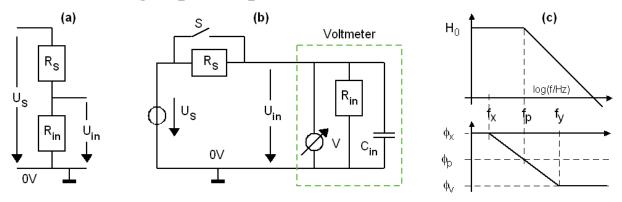


Fig. 4: (a) resistive voltage divider, (b), circuit to measure Rin, Cin, (c) Bode diagram

4.1 DC Input Impedance

The Transfer function of the circuit in Fig. 4(a) is

$$H_{0} = \alpha = \frac{U_{in}}{U_{s}} = \frac{R_{in}}{R_{s} + R_{in}}$$
(3.1)

with U_S and R_S being the source voltage and shunt resistor, respectively, and U_{in} input voltage of the voltmeter. U_S can be measured either with closed switch S or we simply measure both U_S and U_{in} , for example on the two channels of an oscilloscope. The input impedance of the voltmeter can be measured as

$$R_{in} = \frac{\alpha}{1 - \alpha} R_s \tag{3.1}$$

4.2 AC Input Impedance

The Transfer function of the circuit in Fig. 4(b) with open switch S is

$$H(s) = \frac{U_{in}}{U_s} = \frac{H_0}{1 + s / \omega_p}$$
(3.2)

with

and

$$R_{p} = R_{o} \| R_{L} = \frac{R_{o} \cdot R_{L}}{R_{o} + R_{L}}$$
(3.3)
$$\omega_{p} = \frac{1}{R_{p}C_{in}} \Leftrightarrow f_{p} = \frac{1}{2\pi R_{p}C_{in}}$$
(3.4)

The input capacitor of the voltmeter, C_{in} , can then be computed from

$$C_{in} = \frac{1}{2\pi R_p f_p} \tag{3.5}$$

Step 1: Measure Rin at f = 0 Hz or at least at $f \ll f_p$. Step 2: Compute $H_0 = \alpha$ and R_p according to (3.1) and (3.3). Step 3: Figure out f_p . At this frequency $H_0 = 1/\sqrt{2} = 0.707$ and the phase shift is 45°.

5 Conclusions

Some simple methods to compute input and output impedances of measurement equipment were presented.

6 References

[1] OTH Regensburg, available www.oth-regensburg.de