Considering Input and Output Impedances

Martin J. W. Schubert

Considering Input and Output Impedances

Abstract

This document illustrates how to cope with input and output (I/O) impedances.

1 Introduction

1.1 Motivation

It is important to consider I/O impedances of instrumentation. The RLC oscillator in Fig. 1 for example is typically computed as function of the capacitor's equivalent series resistor and the wire resistor of the coil, represented by R_{C} and R_{w} in Fig. 1, respectively, which are typically in the range of $\leq 0.1 \Omega$. Consequently, the dominating resistor in this configuration is the output impedance of the signal source, which is typically $R_{g}=50 \Omega$ if a waveform generator is employed. In addition, monitor units may have impact on measured results.

Fig. 1: RLC oscillator

1.2 Outline

The organization of this communication is as follows:
Section 1 introduces into this document
Section 2 presents fundamental equations
Section 3 copes with output impedances and
Section 4 deals with input impedances, while
Section 5 concludes this document and
Section 6 offers some references

2 Fundamentals

The voltage divider in Fig. 2 delivers for output voltage U_{o} and source voltage U_{s}
$\alpha=\frac{U_{o}}{U_{s}}=\frac{Z_{2}}{Z_{1}+Z_{2}}$
and consequently

$$
\begin{equation*}
Z_{1}=\frac{1-\alpha}{\alpha} Z_{2} \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
Z_{2}=\frac{\alpha}{1-\alpha} Z_{1} \tag{1.3}
\end{equation*}
$$

Fig. 2: voltage divider

3 Measuring Output Impedances

3.1 DC Output Impedance

The voltage divider in Fig. 1 delivers for output voltage U_{o} and source voltage U_{s}
$\alpha=\frac{U_{o}}{U_{s}}=\frac{R_{L}}{R_{\text {out }}+Z_{L}}$
and consequently
$R_{o}=\frac{1-\alpha}{\alpha} R_{L}$

Fig. 3.1: voltage divider

Step 1: Measure U_{s} via $U_{o}=U_{s}$ using $R_{L} \rightarrow \infty$,
Step 2: Measure U_{s} with a load resistor R_{L} with similar size as R_{o},
Step 3: Compute α according to (2.1),
Step 4: Compute R_{o} according to (2.1).

3.2 AC Output Impedance

(a)

(b)

(c)

Fig. 3.2: (a) schematic, (b) amplitude- und (c) phase-diagramm.

Its transfer function is
$H(s)=\frac{U_{o}(s)}{U_{s}(s)}=\frac{H_{\infty}}{1+s / \omega_{p}}$
with

$$
\begin{equation*}
H_{\infty}=\frac{R_{L}}{R_{o}+R_{L}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{p}=\frac{1}{R_{o L} C} \Leftrightarrow f_{p}=\frac{1}{2 \pi R_{o L} C} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{o L}=R_{o}+R_{L} \tag{2.6}
\end{equation*}
$$

4 Measuring Input Impedances

Fig. 4: (a) resistive voltage divider, (b), circuit to measure Rin, , $C_{i n}$, (c) Bode diagram

4.1 DC Input Impedance

The Transfer function of the circuit in Fig. 4(a) is
$H_{0}=\alpha=\frac{U_{\text {in }}}{U_{S}}=\frac{R_{\text {in }}}{R_{S}+R_{\text {in }}}$
with U_{s} and $R s$ being the source voltage and shunt resistor, respectively, and $U_{\text {in }}$ input voltage of the voltmeter. U_{S} can be measured either with closed switch S or we simply measure both Us and $U_{i n}$, for example on the two channels of an oscilloscope. The input impedance of the voltmeter can be measured as
$R_{\text {in }}=\frac{\alpha}{1-\alpha} R_{S}$

4.2 AC Input Impedance

The Transfer function of the circuit in Fig. 4(b) with open switch S is
$H(s)=\frac{U_{\text {in }}}{U_{s}}=\frac{H_{0}}{1+s / \omega_{p}}$
with
$R_{p}=R_{o} \| R_{L}=\frac{R_{o} \cdot R_{L}}{R_{o}+R_{L}}$
and

$$
\begin{equation*}
\omega_{p}=\frac{1}{R_{p} C_{i n}} \Leftrightarrow f_{p}=\frac{1}{2 \pi R_{p} C_{i n}} \tag{3.3}
\end{equation*}
$$

The input capacitor of the voltmeter, $C_{i n}$, can then be computed from
$C_{\text {in }}=\frac{1}{2 \pi R_{p} f_{p}}$

Step 1: Measure Rin at $f=0 \mathrm{~Hz}$ or at least at $\mathrm{f} \ll f_{p}$.
Step 2: Compute $H_{0}=\alpha$ and R_{p} according to (3.1) and (3.3).
Step 3: Figure out f_{p}. At this frequency $H_{0}=1 / \sqrt{2}=0.707$ and the phase shift is 45°.

5 Conclusions

Some simple methods to compute input and output impedances of measurement equipment were presented.

6 References

[1] OTH Regensburg, available www.oth-regensburg.de

