
M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 1 -

A/D and D/A Converter Behavioral
Modeling

Abstract. Models for D/A and A/D conversion as well as for quantization are presented.
Quality criteria as SINAD, ENOB, SNR, THD, SINAD and SFDR will be described and
computed with Matlab.

1 Introduction

The organization of this document is as follows:

Section 1: Introduction
Section 2: DAC (digital-to-analog converter) models
Section 3: ADC (analog-to-digital converter) models
Section 4: Quantization
Section 5: Linear Transmission System Model
Section 6: Applications Using Matlab
Section 7: Conclusions
Section 8: References

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 2 -

2 D/A Converter Behavioral Modeling
Goal: This section presents D/A converter modeling. Not respected is delay.

Fig. 2.1: Linear D/A converter
(DAC) model with amplification
Δ1 and delay TDACdel.

2.1 Nyquist-Sampling DACs
Translation from NoL (“number of levels”) digital to NoL analog levels does not generate
quantization noise. Non-linearity is modeled using Δk ≠ 0 for k > 1 in a polynomial form:

1

0

daNoC
k

k
k

y n

 = 1
0 1 1... da

da

NoC
NoCn n

 (2.1)

with NoC being the number of coefficient, y and n are the DAC’s output (typically voltage)
and input, respectively, with y being typically a voltage and n an integer.

DA the minimum output step of the linear DAC, which is defined as

1

0
DA

k

when k

otherwise

 (2.3)

The NoC coefficients can be computed from the NoC equations (2.1), that are linear functions
of Δk and arise from the NoC characteristic points (nc# , yc#), #=1…NoC. Characteristic points
may be outside the minimum / maximum range of the DAC. For example, we may use
xc256 = 256 (corresponding to yc256 = 2.56V), while the 8-bit input signal has an upper bound
of 255. Ansatz

1 1

2 1 2 1

c c

c c c c

y y n n

y y n n

 (2.4)

delivers the linear model

2 1
1

2 1

c c

c c

y y

n n

 (2.5), 0 1 1 1c cy n . (2.6)

Exercise (solutions below): Given are the 2 characteristic points (nc1, yc1)=(0, 0) and …

(a) … (nc2, yc2)=(256, 2.56V). What is its maximum output voltage ymax when NoB=8 bits?

(b) … (nc2, yc2)=(256, 3.3V). What is its maximum output voltage ymax when NoB=8 bits?
Solution (a): Δ1 = (2.56V-0V) / (256-0) = 1mV, nmax = 28-1=255. ymax = nmax Δ1 + Δ0 = 255ꞏ1mV + 0mV = 2.55V . Note that ymax < yc2 !

Solution (b): Δ1 = (3.3V-0V) / (256-0) = 1.289mV, nmax = 28-1=255. ymax = nmax Δ1 + Δ0 = 255ꞏ1mV + 0mV = 3.287V . Again ymax < yc2 !

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 3 -

2.2 Bounding the Output Signal by Clipping
Modeling an upper bound ymax of a signal y : , maxmin(,)bounded highy y y (2.7)

Modeling an lower bound ymin of a signal y : , minmax(,)bounded low buppery y y (2.8)

Modeling both lower and upper bound to a signal y by combining equations (2.7) and (2.8):

min maxmax(,min(,))boundedy y y y (2.9)

2.3 Matlab Model without Delay
Listing 2.3: Matlab code of a simple D/A Converter (DAC) behavioral model.
%%%
% Module : f_dac
% Purpose: polynomial D/A Converter (DAC) model with bounds
% Inputs : n: vector of input values to be converted
% delta: coefficients of DAC: delta_k=delta(k+(1))
% bounds: =[bmin bmax]: output bounds optional
% Outputs: y, same vector-length as n
% Author : Martin Schubert
% Date : 23.Jul.2018
%%%
%
function y = f_dac(n,delta,bounds)
y = 0; % initialize
if exist('delta'); % coefficient vector available?
 n_power_k=1; % initialize n^k
 for k=1:length(delta); % evaluate polynomial
 y=y+delta(k)*n_power_k;
 n_power_k = n_power_k.*n;
 end;
end;
if exist('bounds'); % [ymin,ymax] boundaries available?
 y=max(bounds(1),min(bounds(2),y)); % clip output vector
end;

2.4 Modeling DAC Delay

Time domain: ()y t → ()DACdely t T

Frequency domain: Y(s,z) → (,) DACdelTY s z e

Typical assumption: Zero Order Hold (ZOH)
using

TDACdel = Ts / 2

Fig. 2.4: Zero Order Hold (ZOH) sampling

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 4 -

2.5 Over-Sampling DACs

2.5.1 Pulse-With-Modulation (PWM) DACs

Fig. 2.4: (a) Pulse-width modulated signal, and (b) behavioral model using average levels.

For behavioral modeling, use the behavioral model of a Nyquist-sampling DAC with
NoL = pwm_period+1 levels as indicated by the staircase line in Fig. 2.2(b), whereas
pwm_period is the length of the PWM bit-sequence. Delay is assumed to be TDACdel = TsN / 2.

2.5.2 Delta-Sigma (ΔΣ) DACs

ΔΣ DACs consist of a modulator generating a pseudo-random data stream and a lowpass as
demodulator. The output data is “pseudo” random, because the random process is controlled
such, that the signal information is coded within the mean value of the data stream. In the
technical most important case of so-called switch–mode conversion the modulator outputs a
two-level pseudo-random bit-stream.

The ΔΣ modulator is not bound to certain levels as the PWM DAC. Any level can be
represented by the average of the pseudo-random output data stream. Consequently:

ΔΣ DACs including modulator and demodulator can be modeld without quantization steps.

Delay for ΔΣ modulators depends on the demodulating lowpass and is typically
TDACdel >> Ts / 2.

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 5 -

3 A/D Converter Behavioral Modeling
Goal: This section presents A/D converter modeling. Not respected is delay.

Fig. 3.1:
Linear A/D converter (ADC)
model with delay TADCdel.

3.1 Value-Discretization (Quantization)
Translation from an infinite number of continuous values to NoL digital levels comes with
round-off (quantization) noise model by the round function as

1

0

adNoC
k

k
k

n round x

 = 1

0 1 1... ad

ad

NoC
NoCround x x

 (3.1)

with NoC being the Number of Coefficients and polynomial order +1. It turns out that

1

1

AD

 (3.2)

with ΔAD being the minimum input step (resolution) of the ADC. This ideal case is defined as

1/ 1

0
AD

k

when k

otherwise

 (3.3)

in the signal processing sense. Mathematical linearity will allow for an offset (α0 ≠ 0), too.

The NoC coefficients are computed from NoC equations (3.1), that are linear in αk and arise
from the NoC characteristic points (nc# , yc#), #=1…NoC. Characteristic points may be outside
the minimum / maximum range of the ADC. For example, output nc256 = 256 may correspond
to input voltage xc256 = 3.3V, while the 8-bit output range has an upper bound of 255. Ansatz:

1 1

2 1 2 1

c c

c c c c

x x n n

x x n n

 (3.4)

delivers the linear model 2 1
1

2 1

c c

c c

n n

x x

 (3.5), 0 1 1 1c cn x (3.6)

Exercise: For sufficiently busy ADC input its quantization noise power is model as

2 2 /12q ADE delivering the effective (rms) quantization noise voltage / 12q ADE .

Equidistribution over f=0…fs/2 delivers spectral density ' 2 2 / 6q AD sE f ' / 6q AD sE f .

Compute Eq and E'q as function of α1 instead of ΔAD.

Solution: Replace ΔAD by 1/α1: Eq = 1/(α1ꞏsqrt(12)), E'q = 1/(α1ꞏsqrt(6ꞏfs)).

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 6 -

3.2 Bounding Signals by Clipping
Modeling both lower and upper bound to signal y can be done by

min maxmax(,min(,))boundedn n n n (3.7)

3.3 Matlab Model without Delay
Listing 3.3: Matlab code of a simple A/D Converter (ADC) behavioral model. Parameter
noquant prohibits quantization, as computation of error eq=y–yref requires an unquantized yref.

%%%
% Module : f_adc
% Purpose: polynomial A/D Donverter (ADC) model with bounds
% Inputs : x: vector of input values to be converted
% alpha: coefficients of DAC: alpha_k=alpha(k+(1))
% bounds: =[bmin bmax]: output bounds, optional
% noquant: no quantization if this parameter exists
% Outputs: n, same vector-length as x
% Author : Martin Schubert
% Date : 23.Jul.2018
%%%
%
function n = f_adc(x,alpha,bounds,noquant)
n = 0; % initialize
x_power_k=1; % initialize x^k
for k=1:length(alpha); % evaluate polynomial
 n=n+alpha(k)*x_power_k;
 x_power_k = x_power_k.*x;
end;
if not(exist('noquant')); n = round(n); end; % round if not prohibited
if exist('bounds'); % [ymin,ymax] boundaries available?
 n=max(bounds(1),min(bounds(2),n)); % clip output vector
end;

3.4 Modeling ADC Delay

Time domain: ()n t → ()ADCdeln t T

Frequency domain: N(s,z) → (,) ADCdelTN s z e

Tapcial assumption: TADCdel = Ts

Fig. 3.4: sampled analog input curve

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 7 -

4 Quantization Behavioral Modeling

4.1 Multi-Bit Quantization

The process of value-discretization with a given step Δ1, also termed quantization, is the
representation of a quantity x in terms of an integral multiple of a minimum y step ∆1. It
corresponds to the combination of an ADC followed by a DAC with α1 = 1/Δ1.

 1 1/y round x . (4.1)

We may add a compensated offset that cancels out using α0 = -Δ0/Δ1 = -Δ0ꞏα1:

0
1 0

1

x
y round

. (4.2)

It is seen in Fig. 4.1(b), that using balanced offset cancels out and does not introduce offset
after all. Consequently, using this balanced offset is compliant with linearity in a signal
processing sense.

Listing 4.1: Quantizer code delivering Figs. 4.2(a) and (b). As Matlab array begin with index
1, we have delta(1) = Δ0 being the offset and delta(2) = Δ1 being the step size in the model.

%%%
% Module : f_quantize
% Purpose: model linear quantizer y=delta*round(x/delta)
% Inputs : x: vector of input values to be converted
% delta: vector with 2 elements
% delta(1)=delta_0: offset.
% delta(2)=delta_1: step, when =0 no quantization.
% bounds: =[bmin bmax]: output bounds, optional
% Outputs: y, same vector-length as x
% Author : Martin Schubert
% Date : 19.Nov.2019
%%%
%
function y = f_quantize(x,delta,bounds)
if or(delta(2)==0, not(exist('delta')));
 y = x;
else
 y = delta(1) + delta(2)*round((x-delta(1))/delta(2));
end;
if nargin > 2;
 y=max(bounds(1),min(bounds(2),y)); % clip output vector
end;

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 8 -

4.2 Single-Bit Quantization

Using compensated offset as in eq. (4.2) is particularly useful in single-bit quantization as
illustrated in Fig.2.1 Fig. 2.1(a) uses Δ1=2, Δ0=0 delivering unsatisfactory results with 3 levels
instead of 2. The desired solution shown in Fig. 2.1(b) is obtained using offset Δ0 = 1.

Fig. 4.2: simple 2-level quantization (a) left: with x0 = 0 and (b) right: with x0 = 1.

Listing 4.2: Matlab testbench generating Fig. 4.2.

% tb_quanitze: Testbench for f_quantize
clear all; % clear workspace
addpath('../../functions');
%
% General specifications for quantization
NoL = 2; % Number of quantization Levels
xmin = -1.2; xmax = 1.2;
ymin = -1; ymax = 1;
bounds = [-0.5 0.5];
%
NoS = 101; % Numbe of Samples
t = 0:NoS-1;
F = 1/50; % frequency rel to sample -> wavelength=1/F samples
x = 1.2*sin(2*pi*F*t);
%
% quantization
deltaX = (ymax-ymin)/(NoL-1);% Quantization deltY: smallest possible step
% f_quantize(input, [offset, delta])
y1 = f_quantize(x , [0 , 2]); % no offset adjustment
y2 = f_quantize(x , [1 , 2]); % with offset adjustment
%
% Graphical postprocessing
figure(42);
subplot(211); plot(t,x,'b',t,y1,'r-'); grid on;
title('simple quantizer'); xlabel('sample number'); ylabel('no offset');
subplot(212); plot(t,x,'b',t,y2,'g-'); grid on;
xlabel('sample number'); ylabel('with offset');

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 9 -

5 Linear Transmission System Behavioral Modeling

Fig. 5: Top-level view of an A/D and D/A (A/D/A) Conversion system.

Assume any System as shown in Fig. 5, which is linear in a mathematical sense (i.e. it may
have offset: c0 ≠ 0), so that it can be described as

xccy 10 (5.1)

If the system is non-inverting, so that input states xmin, xmax correspond to output states ymin,
ymax, respectively, we write

min min

max min max min

y y x x

y y x x

. (5.2)

If the system might be inverting, so that xmin corresponds to ymax, then it is unambiguous to use
input values x1, x2 corresponding to output values y1, y2, respectively, and write

12

1

12

1

xx

xx

yy

yy

 (5.3)

which translates to 2 1
1 1

2 1

y y
y y x x

x x

 and delivers coefficients

12

12
1 xx

yy
c

 (5.4)

0 1 1 1c y c x (5.5)

with respect to equation (5.1).

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 10 -

6 A/D/A Conversion Modeling Using Matlab
Goal of this section is to get experience with A/D/A conversion modeling using Matlab.

6.1 Getting Started with Matlab and Testbench tb_ada

 Left column: signals, right column error
 Domains: top Output vs. Input (DC), middle: time (transient), bottom frequency (AC)

Fig. 6.1: Plot obtained with f_adc and f_dac and testbench tb_ada according to listing 6.1

The Matlab script shown in listing 6.1 produces Fig. 6.1. The left hand side shows signals and
the right hand side errors. We see:
 Top row: DC mode = static output versus input signal characteristics: y(x), modeled as y_x.
 Middle row: Transient mode = time domain: signals over time axis, e.g. y(t) modeled as y_t.
 Bottom row: AC mode: signals over absolute frequency F=f/fs, Y(F) modeled as X_f.

Get familiar with table 6.1. Check for the exercises below.

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 11 -

Listing 6.1: A/D/A modeling
% tb_ada: Testbench for A/D and D/A converters
clear all; addpath('../../functions/');
%
% DAC specifications
%nda_c=[0 2 4 6 8]; % 5 n-inputs
%yda_c=[0 3.3*1/4 3.3*2/4 3.3*3/4 3.3]; % 5 y-outputs
nda_c=[0 1 2 3 4 5 6 7 8]; % 9 n-inputs
yda_c=nda_c*3.3/8; % 9 n-outputs
%yda_c=[0 0.4125 0.825 1.2375 1.65 2.0625 2.475 2.8875 3.3]; % 9 n-outputs
% Typical measured DAC characteristics
%yda_c = [0 0.4140 0.8285 1.2430 1.6574 2.0718 2.4864 2.9009 3.3154];
% Untypical measured DAC characteristics needing 8. harmonic for SFDR
%yda_c = [0.0015 0.404 0.803 1.216 1.631 2.013 2.42 2.831 3.242];

bda = [0.0 3.30]; % output clipping bounds for DAC
delta = f_PolyInit(nda_c,yda_c) % compute coefficints for DAC
%
% ADC specifications
xad_c = [0.5:7.5]*3.3/8; % characteristic input data points to ADC
nad_c = [0.5:7.5]; % characteristic output data from ADC
%nad_c(3) = 2.5001; % add a non-linearity
bad = [0 8]; % clipping bounds for ADC
alpha = f_PolyInit(xad_c,nad_c) % compute coefficints for ADC
%
% DC: I/O characteristics
NoS_x = 1001; % Number of x-Samples
xmargin = 0.5; % abscissa extension over x_c-bounds
xmin = min(xad_c)-xmargin; % left end of abscissa x
xmax = max(xad_c)+xmargin; % right end of abscissa x
xstep = (xmax-xmin)/(NoS_x-1); % x step for measurement
x = xmin:xstep:xmax; % x for y(x) plot
%
% using the 2 functions: f_adc and f_dac
n_x = f_adc(x,alpha,bad); % quantized ADC output
y_x = f_dac(n_x,delta,bda); % DAC output from quantized n_x
nref_x = f_adc(x,alpha,bad,'noquant'); % unquantized ADC output nref_x
yref_x = f_dac(nref_x,delta,bda); % DAC out from unquantized nref_x
eq_x = y_x - yref_x; % quantization error
figure(61); subplot(321); plot(x,y_x,'k',x,yref_x,'b');
title('I/O Characteristics'); xlim([min(x) max(x)]);
xlabel('input voltage'); ylabel('analog & quantized'); grid on;
subplot(322); plot(x,eq_x,'r'); xlim([min(x) max(x)]);
title('errors'); xlabel('input voltage'); ylabel('error'); grid on;
%
% Transient: time domain
NoS_t = 1001; % Number of Samples on time axis
t = 0:NoS_t-1; % sampled time axis
NoW_t = 19.0; % Number of Waves ovr entire time axis
Fsig_t = NoW_t/NoS_t; % signal frequency relative to sampling rate
xamp_t = 1.65; % amplitude of sinusoidal input signal
xoff_t = 1.65; % offset of sinusoidal input signal
x_t = xamp_t*sin(2*pi*Fsig_t*t) + xoff_t; % sinusoidal test signal
n_t = f_adc(x_t,alpha,bad); % quantized ADC output
y_t = f_dac(n_t,delta,bda); % DAC output from quantized n_t
nref_t = f_adc(x_t,alpha,bad,'noquant'); % analog ADC output as reference
yref_t = f_dac(nref_t,delta,bda); % DAC output from nref_t
eq_t = y_t - yref_t; % quantization error
subplot(323); plot(t,y_t,'k',t,yref_t,'b'); xlim([1 1/Fsig_t]);
xlabel('time-domain sample'); ylabel('analog & quantized'); grid on;
subplot(324); plot(t,eq_t,'r'); xlim([1 1/Fsig_t]);
xlabel('time-domain sample'); ylabel('error'); grid on;

% apply window functions
SideLobeAttenuation_dB = 150; % Relative side-lobe atten., default: 100dB
win=ones(1,NoS_t); % rectangular window
%win=chebwin(NoS_t,SideLobeAttenuation_dB)'; % Matlab's chebwin
%win=f_winCheb(NoS_t,SideLobeAttenuation_dB); % selfmade Chebychev window
%win=blackman(NoS_t); % Blackman window
%win=blackmanharris(NoS_t); % Blackman-Harris window

% frequency domain
NoS_F = NoS_t; % Number of frequency Samples
F = [0:NoS_F-1]/NoS_F; % rel. Frequency axis, F=f/fs, fs:sampling rate
X_F = f_dB(fft(x_t.*win)/NoS_F); % spectral x_t=x(t)
Y_F = f_dB(fft(y_t.*win)/NoS_F); % spectral quantized y_t=y(t)
Yref_F = f_dB(fft(yref_t.*win)/NoS_F); % spectral analog y(t)
Eq_F = f_dB(fft(eq_t)/NoS_F,1e-8); % spectral error: y(t)-yref(t)
subplot(325); plot(F,Y_F,'k',F,Yref_F,'b'); xlim([0 0.5]);
xlabel('relative Frequency'); ylabel('analog & quantized [dB]'); grid on;
subplot(326); plot(F,Eq_F,'r'); xlim([0 0.5]);
xlabel('relative Frequency'); ylabel('error [dB]'); grid on;
%
%tb_characterize % call characterization script

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 12 -

Listing 6.1 uses functions f_PolyInit and f_dB shown in listings 6.3.1 and 6.3.2, respectively.

Table 6.1: Parameters of listing 6.1 yielding Fig. 6.1

Extension...
_c denotes characterizing data, e.g. vectors x_c, n_c, y_c for defining ADC and DAC

characteristic curves.
_x denotes static (DC) data, e.g. static I/O characteristic curves of ADC and DAC.
_t denotes time-domain (transient) data, i.e. curves over the time axis.
_F denotes frequency-domain (AC) data, i.e. curves over the relative frequency axis F,

whereas F=f/fs with f being real frequency in Hz and fs sampling rate.

General Specifications
NoL int, Number of possible quantization Levels
NoD Number of Deltas, NoD = NoL-1 or NoL depending on the situation
x_c vector of input data points defining the ADC static characteristic curve
n_c vector of data points, ADC output and DAC input, of static characteristic curve
y_c vector of output data points defining the DAC static characteristic curve
delta = [Δ0 Δ1 Δ2 …] coefficients of the polynomial, same length as n_c, y_c, defining

a polynomial through points (n_ck, y_ck), k=1:length(y_c).
alpha = [α0 α1 α2 …] coefficients of the polynomial, same length as x_c, n_c, defining a

polynomial through points (x_ck, n_ck), k=1:length(x_c).
f_PolyInit function computing NoC coefficients ck of a polynomial interpolating data points

(xk,yk), k=0…NoC-1.
bad output min/max bounds of f_adc.
bda output min/max bounds of f_dac.

DC Modeling
x abscissa of DC plot, x = xmin : xstep:xmax.
NoS_x Number of Samples on x
xmargin extension of DC abscissa x over input signal range x.
n_x = f_adc(x) → integral numbers
y_x = f_dac(x).
nref_x = f_adc(n_x) without quantization → real numbers
yref_x = f_dac(nref_x). required to compute eq
eq_x = y_x – yref_x , quantization error

Transient (Time-Domain) Modeling
t abscissa of transient plot, t = 0:NoS_t-1;.
x_t input signal over time axis, same length as t
NoS_t Number of Samples on time axis: t
NoW_t Number of Waves on time axis t.
Fsig_t = NoW_t/NoS_t: signal frequency relative to sampling rate (fs).
xamp_t, xoff_t = amplitude and offset of signal x_t = xamp_t*sin(2πFsigꞏt)+xoff_t
n_t = f_adc(x_t) → integral numbers
y_t = f_dac(x_t).
nref_t = f_adc(n_t) without quantization → real numbers
yref_t = f_dac(nref_t). required to compute eq
eq_t = y_t – yref_t, quantization error

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 13 -

AC (Frequency-Domain) Modeling
F abscissa of AC plot, F = [0:NoS_F-1]/NoS_F = [0:1). F=f/fs=fTs.
X_F Fourier transformed of x_t in dB
Y_F Fourier transformed of y_t in dB
Yref_F Fourier transformed of yref_t in dB
Eq_F Fourier transformed of eq_t in dB
NoS_F Number of Samples on frequency axis: F , NoS_F=NoS_t.

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 14 -

6.1.1 Getting started with Matlab model tb_ada

Unpack file ADA_Modeling_Matlab.zip provided by the author, navigate to subdirectory
ADA_Modeling_Matlab\testbenches\tb_ada\ and double-click left on script-file tb_ada.m .
Matlab should start. Click on run to get the graphics shown in listing 6.1 related to Fig. 6.1.2,
i.e. nADCout = n = nDACin modeled as n_x and n_t for DC and transient mode simulation,
respectively. Identify n_x and n_t in the code. We will work with “fractional integers” n,
which is necessary for error computation and may be useful for oversampling data converters
like ΔΣ converters with averaging demodulators. Quality criteria like effective number of bits
(ENOB) are fractional, too.

The second code line
clear all; addpath('../../functions/');

clears the workspace and adds our directory functions to the Matlab’s search path, i.e. it
makes all our selfmade Matlab functions available, that are located in directory ../../functions/.
Note that Matlab uses UNIX/Linux notation, where a slash separates directories (not a
backslash), and a single dot “.” stands for “this directory” and a double-dot “..” for “parent
directory”.

Frequency domain window:

The lower left widow is the frequency domain window. The blue, unquantized curve as a
“signal to noise-floor ratio” of >300…320 dB. How do you explain this range?

Divide them 20dB to get 15…16 decimal places, which is the
round-off noise of the double-precision floating point numbers
used as default data type by Matlab.

As we have sampled data points only without information of the real time span between them,
we compute a relative frequency F = f / fs with fs being the sampling frequency, which
corresponds to F=1. Consequently, the maximum frequency of our Fourier transform
becomes 1. Why do we limit our F-axis to F = 0… ½ instead of F = 0…1?

Sampled signal spectra are periodic in f=fs and consequently in
F=1. They behave symmetric around fs/2 and consequently around
F=1/2. Consequently F>1/2 supplies no new information, but
only a symmetric copy of range F=0…1/2.

Check it out by changing line
subplot(325); plot(F,Y_F,'k',F,Yref_F,'b'); xlim([0 0.5]);

to
subplot(325); plot(F,Y_F,'k',F,Yref_F,'b'); % xlim([0 0.5]);

which out-comments the limitation of the F-axis.

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 15 -

6.1.2 Defining Characteristics of the D/A Converter Model f_dac

We supply NoCda points of the DAC’s characteristic curve by vectors nda_c, yda_c.
Statement “delta = f_PolyInit(nda_c,yda_c” computes the NoCda coefficients of the
polynomial

1

0

daNoC
k

k
k

y n

 = 1
0 1 1... da

da

NoC
NoCn n

 (2.1)

interpolating the NoCda (in the example 9) characteristic points. Matlab prints them in its
Command Window. First of all the DAC is ideal and Δ1 the only coefficient ≠0. Uncomment
other statements defining a vector yda_c, knowing that the last writing on a variable overrides
all previous assignments. Try some small deviations from the ideal characteristics. Look up
nda_c in the workspace and observe its impact in the blue curves of the graphics.
How many additional harmonics does the 8th order polynomial generate? -> 7: 2…8

Vector bda sets the [min max] boundaries, in the example bda = [0 3.30]. Use ideal
characteristics again, change bounds to bda = [0 3.29] and observe the effect of clipping.
How many additional harmonics does a little bit clipping generate? -> infinite

Note that characteristic points might be outside the bounds, e.g. point (2563.3V), while the
maximum input of an 8-bit word is 255.

After these tests, bring the code back to its initial state (for example with keys CTRL+z).

(a) A/D/A system assumed

(b) Dividing 0…3.3V into

8 Δ’s using 9 levels.

Fig. 6.1.2: Example data

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 16 -

6.1.3 Defining Characteristics of the A/D Converter Model f_adc

We supply NoCad (in the example 8) points of the ADC’s characteristic curve by vectors
xad_c, nad_c. Statement “alpha = f_PolyInit(xad_c,nad_c)” computes the NoCad coefficients
of the polynomial

1

0

adNoC
k

k
k

n round x

 = 1

0 1 1... ad

ad

NoC
NoCround x x

 (3.1)

interpolating the NoCad characteristic points, and Matlab prints them in its Command
Window. The DAC is modeled ideal and α1 the only coefficient ≠0.

Note that the characteristic curve is defined with self-contradictory “fractional integers” like
n.5. This is because xad_c is a vector of thresholds, so that inputs x = VTn - ε → n while
x = VTn + ε → n+1.

Function f_adc() is always used twice, e.g. in lines
n_t = f_adc(x_t,alpha,bad); % quantized ADC output
y_t = f_dac(n_t,delta,bda); % DAC output from quantized n_t
nref_t = f_adc(x_t,alpha,bad,'noquant'); % analog ADC output as reference
yref_t = f_dac(nref_t,delta,bda); % DAC output from nref_t
eq_t = y_t-yref_t; % quantization error

whereas n_# is realistic quantized ADC output while nref_# is unquantized theoretically ideal
ADC output for infinite resolution, which is required to compute quantization error eq_#.

Vector bad sets the [min max] boundaries, in the example bda = [0 8].

Note that characteristic points might be outside the bounds, e.g. point (3.3V256), while the
maximum output of an 8-bit word is 255.

After these tests bring the code back to its initial state (for example with keys CTRL+z).

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 17 -

6.1.4 Working with Discrete and Fast Fourier Transformation

DFT and FFT

The digital Fourier transformation (DFT) translates NoS time domain samples to NoS
frequency domain samples. It can be greatly accelerated by the fast Fourier transformation
(FFT), when NoS =2M with M being an integral number. Matlab offers the functions fft() and
ifft() for the FFT and its inverse. From the author’s experience Matlab’s fft works excellent
even when NoS =2M with M being a fractional number, e.g. NoS = 1001. Frequency resolution
become better with increasing NoS.

Both DFT and FFT produce real and imaginary part, allowing for magnitude and phase
representation as typical for Bode diagrams. Here, magnitude information is more interesting
and is obtained by Matlab function abs().

Using the plot() command for FFT

Matlab command y = fft(x) outputs a vector y having the same length as input vector x.

Try Matlab command line: (Command “figure(1)” creates a plot window marked “Figure 1”)

figure(1); NoS=101; t=0:NoS-1; x=sin(0.1*t); Y=fft(x); plot(Y);

What happens? Explain the result! (Ignore “figure(1)”, which causes figure handle to be 1.)

FFT result Y is a vector of complex numbers.
Matlab command plot(Y) plots Re{Y} versus Im{Y}.

Try Matlab command line (continues writing in “Figure 1” window)

NoS=101; t=0:NoS-1; x=sin(0.1*t); Yabs=abs(fft(x)); plot(Yabs);

What happens? Explain the result! Explant abscissa (x-axis) scaling.

Yabs is a vector of real numbers.
Matlab command plot(Yabs) plots Yabs versus index(Yabs).

Try Matlab command line using any frequency vector f with same length as t:

NoS=101; t=0:NoS-1; x=sin(0.1*t); Yabs=abs(fft(x)); f=628*t; plot(f,Yabs);

What happens? Explain the result! Explant abscissa (x-axis) scaling.

Matlab command plot(f,Yabs) plots Yabs versus f.

Frequency scaling for FFT

As we do not know the real-time sampling frequency, we scale it to relative frequency
F = f / fs with correspondence F = 1 fs = 1.

Try Matlab command lines with relative frequency vector F with same length as t:

NoS=101; t=0:NoS-1; x=sin(0.1*t); Yabs=abs(fft(x));
F=[0:NoS-1]/NoS; plot(F,Yabs);

What happens? Explain the result! Explant abscissa (x-axis) scaling.

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 18 -

Matlab command plot(F,Yabs) plots Yabs versus F=0…1.

Sampled signal spectra magnitudes like Yabs = |Y| are symmetric around fs / 2 over frequency
f, and consequently around ½ over relative frequency F. So we do not gain new information
when we plot the frequency range F = 0.5…1 and limit F to 0…0.5.

Try Matlab command lines with abscissa being limited to range F = 0…0.5:

NoS=101; t=0:NoS-1; x=sin(0.1*t); Yabs=abs(fft(x));
F=[0:NoS-1]/NoS; plot(F,Yabs); xlim([0 0.5]);

DFT / FFT Assume Periodic Repetition of the Measurement Window

Run Matlab script tb_ada again. Line

NoW_t = 19.0; % Number of Waves over entire time axis

sets the number of waves in the transient window, in this case its 19 waves. A discrete
Fourier transformation has to assume, that the time axis is repeated periodically, so that the
curve at the end of the time window must fit to the phase at its beginning without phase jump.
In other words: NoW_t must be an integral number.

Exercise: What happens if you set NoW_t = 19.01? Observe the effect in the lower left
frequency-domain window; observe particularly the scaling of the ordinate (dB-axis).

Massive loss of unquantized accuracy from -320dB to -80dB

Explain the -320 dB accuracy. Where does this number -320dB come from?

Round-off noise of 16 decimal places double precision floating
point numbers used by Matlab: 16·20dB = 320dB

Is it realistic for real measurements, particularly if we have several frequencies in out signal,
which may be sound?

No! -> We have to use window functions

Within tb_ada set the Number of Waves over time axis to NoW_t=20 and Number of
Samples to NoS_t = 1000. What happens? Explanation?

All the 20 waves are sampled at exactly the same phase.
Consequently, we get for every wave exactly the same
quantization error. This error is no more a random process but
adds up in a few values.

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 19 -

6.1.5 Using Window Functions

Practically we can hardly measure a signal such that its wavelength fits with the required
accuracy into our measurement window, and it may be impossible when the signal contains
several frequencies. Therefore, we apply so-called window functions. What we have applied
so far was the “do-nothing window” consisting of ones only.

Run tb_ada with ideal initial conditions. You should yield some 320dB SNR.

For better observability of the man lobe (=main peak) reduce the F-axis section to F = 0…0.2
within command line

subplot(325); plot(F,Y_F,'k',F,Yref_F,'b'); xlim([0 0.2]);

Run tb_ada with the ideal initial conditions. You should yield some 320dB SNR. Reduce the
number of samples from NoS_t = 1001 to 191, while Number of Waves is NoW_t = 19.0.
What happens?

We see that more time-domain samples yield a better frequency-
domain resolution, but SNR of 320dB still remains.

Set NoS_t = 1001 and reduce the F-axis section to F = 0…0.04 within command line

subplot(325); plot(F,Y_F,'k',F,Yref_F,'b'); xlim([0 0.04]);

Run tb_ada. You should yield some 320dB SNR again. Then uncomment line

win=chebwin(NoS_t, SideLobeAttenuation_dB)'; % Matlab's chebwin

What happens?

Loss of SNR -320 to some -SideLobeAttenuation_dB

Try different values for parameter SideLobeAttenuation_dB, e.g. 50, 100, 150 (whereas
100 is the Matlab default value). What do you observe?

SNR is suppressed to "SideLobeAttenuation_dB". The price for
better side-lobe attenuation is a wider main lobe.
Furthermore, we have to accept some DC value.

Run tb_ada with the ideal initial conditions. You should yield some 320dB SNR. Then
change the Number of Waves of time-axis from 19.0 to 19.01. What happens?

Strong deterioration of the SNR.

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 20 -

From this situation, uncomment the command

win=chebwin(NoS_t, SideLobeAttenuation_dB)'; % Matlab's chebwin

again. What happens?

The result in the frequency domain is as good and as bad as
with NoW_t = 19.0.

Check for Blackman (blackman) or Blackman-Harris (blackmanharris) window functions in
Matlab. Can we set side-lobe attenuation there, too?

No

Summarize your knowledge with window functions

No window function necessary when a wavelength fits ideally
into the measurement window.

If a wavelength does not fit ideally into into the measurement
window, results can be greatly improved with window functions.

Better side-lobe attenuation of window functions is paid for
with a wider main lobe.

Chebychev window function allows to set a desired side-lobe
attenuation, which is not the case for other window functions
such as Blackman or Blackman-Harris.

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 21 -

6.2 Computing Quality Criteria with Matlab

Goal: Compute quality criteria with Matlab.

Check for Matlab commands sfdr, type help sfdr or check out the Matlab homepage.

Definition
 Noise occurs over the complete frequency axis.
 Distortion is caused by harmonics, i.e. non-linearities that reapeat with every wave f the

test signal.

6.2.1 SFDR: Spurious Free Dynamic Range

The SFDR is the distance in power between a sinusoidal test signal and its greatest harmonic:

max.

Signal

harmonic

P
SFDR

P
 ,

2

1

2

()
10 log

max ()
dB

k

X f
THD dB

X f

 with k > 1 and fk = kf1,

To make the SFDR big, the amplitude of the test signal is choosen to be as large as possible.

Fig. 6.2.1: Noise power spectrum

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 22 -

6.2.2 THD: Total Harmonic Distortion
The Total Harmonic Distortion (THD, dt. Klirrfator) is another measure for errors based on
non-linearity. Test setup equals tht of SFDR, but it computes the energy of the harmonics of
the sinusoidal signal with frequency f1 compared to the energy at f1 or the total signal energy.

Signal

Distortion

P

P
THD ,

2

1

2

2

)(

)(
log10

fX

fX
dBTHD

N

k
k

dB with fk = kf1,

Comments:
 THD is typically negative, note that distortion is on the numerator, not in the denominator.

 Pricipally, |THD| ≤ SFDR, because 2 2

2

() max ()
N

k k
k

X f X f

6.2.3 SINAD: Signal to Noise and Distortion Ratio

Signal to Noise and Distortion ratio (SINAD) is another measure for errors based on non-
linearity. Test setup equals tht of SFDR, but it computes the energy of the harmonics of the
sinusoidal signal with frequency f1 compared to the energy at f1 or the total signal energy.

DistortionNoise

Signal

PP

P
SINAD

 .

Comment:
 As noises is never zero, SINAD < |THD|, and consequently SINAD < |THD| ≤ SFDR.

6.2.4 SNR: Signal-to-Noise Ratio

Signal to Noise Ratio:
2

2

Noise

Signal

Noise

Signal

A

A

P

P
SNR for any curve.

Matlab function SNR = snr(x,e) assumes x to be a vector of signal samples e a vector of error
(noise) samples. With number of samples being NoS = length(x) == length(e) Matlab
computes

SNR= snr(x,e)

NoS

n
n

NoS

n
n

e

x
SNR

1

2

1

2

If xn is a sinusoidal test signal with maximum possible amplitude, then shule SNR =SINAD

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 23 -

6.2.5 ENOB: Effective Number of Bits:
If an ADC offer 16 output pins, but only 12 of them are accurate, the rest is noise, then
ENOB=12. These supernumerary pins might have several reasons, e.g. inaccuracies in the
most significant bits or noise in the input signal of the considered ADC. Offering 16 pins
instead of 12 may be reasonable e.g. for pin-compatibility with more expensive ADCs.

ENOB
dB

dBSINAD

02.6

76.1
 ,

which assumes a sinusoidal test wave and triangular quantization noise waveforms. In case of
rectangular quantization noise waveforms replace “-1.76dB” by “+3.01dB”.

6.2.6 Matlab modeling

Listing 6.2: ADA model with input/output clipping
% tb_characterize: computing A/D/A quality criteria
% run tb_ada before!
figure(62)
xWin=0; % Window function: 0: rectangular, 1: selfmade, 2: Matlab's chebwin
if(xWin==0) win=ones(1,NoS_t); % rectangular window
else if(xWin==1) win=f_winCheb(length(NoS_t),150);% selfmade Chebychev win
else win=chebwin(length(NoS_t),150)'; % Matlab's chebwin
end; end;
% frequency domain, unquantized signal quality
subplot(421); sfdr(yref_t);
subplot(423); thd(yref_t); % thd(yref_t,1,8);
subplot(425); sinad(yref_t);
subplot(427); snr(yref_t);
% frequency domain, unquantized signal quality
subplot(422); sfdr(y_t);
subplot(424); thd(y_t); thd(y_t,1,25);
subplot(426); sinad(y_t);
subplot(428); snr(y_t);

Run tb_ada first, then run tb_characterize to obtain the graphics shown in Fig. 6.2.6 for the
ideal, initial tb_ada testbench.

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 24 -

Exercise 1: Change line
subplot(424);thd(y_t); thd(y_t,1,16);

to
subplot(424);thd(y_t); % thd(y_t,1,16);

What happens to THD in subplot 4 compared to SFDR in subplot 4? Explain!

In this case -THD=35.81dB > SFDR=29.42dB. This is because THD
respects by default the first 6 harmonics only.The SFDR shows
the maximum peak at F=400m, i.e. harmonic 21!

Fig. 6.2.6(a): Computing SFDR, THD, SINAD, SNR for the initial testbench tb_ada, left-
hand side for unquantized (blue) and right-hand side for quantized (black) signal.

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 25 -

Exercise 2: In tb_ada, uncomment line
yda_c = [0.0015 0.404 0.803 1.216 1.631 2.013 2.42 2.831 3.242];

run tb_ada and then run tb_characterize. You get the graphics shown below. What happens to
THD compared to SFDR in subplot 3? Explain andcorrect it!

In this case -THD=45.02dB > SFDR = 42.51. This is because THD
computation respects by default the first 6 harmonics only,
which is good to see at the red color. Change
subplot(423);thd(yref_t); % thd(yref_t,1,8);
to
subplot(423); thd(yref_t,1,8);
respecting 8 harmonics yielding THD=-40.28dB.

Fig. 6.2.6(b): Computing SFDR, THD, SINAD, SNR for the initial testbench tb_ada, left-
hand side for unquantized (blue) and right-hand side for quantized (black) signal.

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 26 -

6.3 Appendix: Selfmade Matlab Functions Used

Listing 6.3.1: Function f_PolyInit computes polynomial coefficients interpolating (xk,yk)

%%%
% Purpose: Compute coefs of polynomial y(x) through points (xi,yi)
% Inputs:
% vx(): x-vector defining polynomial: len(vx)>1 required
% vy(): y-vector defining polynomial: vy(i) = f(vx(i))
% Outputs:
% vc(): coefficients: y(x) = vc(i)*x^(i-1)
% Author: Martin Schubert
% Date last modified: 09.Apr.2017 by M. Schubert
%%%
%
function vc = f_PolyInit(vx,vy)
NoP = length(vx);
assert(nargin==2,'function requires 2 input vectors');
assert(NoP>1,'input vectors must have at least 2 points');
assert(length(vy)==NoP,'error: vx and vy must have same length');
A = zeros(NoP,NoP);
for row=1:NoP;
 for col=1:NoP;
 A(row,col) = vx(row)^(col-1);
 end;
end;
if size(vy,1)>1;
 vc = A\vy; % compute coefficients with column vector vy
else
 vc = A\vy'; % the ' brings cy into the upright position
end;
vc=vc';

Listing 6.3.2: Function f_dB translates an amplification to decibels.

%%%
% Module: f_dB
% Purpose: compute amplitude amplification in dB: y_dB = 20*log10(x)
% Inputs:
% x() required : |x| is taken as amplitude amplification
% xmin default 0: x is clipped to |x|>=xmin as log(0)=-infinite
% Outputs:
% y_dB : 20*log10(max(abs(x),xmin))
% Author: Martin Schubert
% Date last modified: 05.Apr.2017 by M. Schubert
%%%
function y_dB = f_dB(x,xmin);
if nargin==1;
 y_dB = 20*log10(abs(x));
else
 y_dB = 20*log10(max(abs(x),xmin));
end;

M. Schubert A/D and D/A Converter Behavioral Modeling OTH Regensburg

 - 27 -

7 Conclusions
Behavioral models for analog-to-digital and digital-to-analog conversion as well as quantization werde
discussed. Non-linear effects like high-order polynomial transfer characteristics and bounding were
respected. A Matlab model is presented and Matlab exercises are encouraged.

8 References
[1] 1658-2011 - IEEE Standard for Terminology and Test Methods of Digital-to-Analog Converter

Devices, available: https://ieeexplore.ieee.org/document/6152113.
9 1241-2010 - EEE Standard for Terminology and Test Methods for Analog-to-Digital
Converters, available: https://ieeexplore.ieee.org/document/5692956.

[2] Walt Kester, Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so You Don't Get
Lost in the Noise Floor, Analog Devices Tutorial MT003, Available 30.07.2018:
http://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf.

[3] Matlab, available Nov. 2017: https://de.mathworks.com/products/matlab.html.
[4] Juan Garcia, Stephen G. LaJeunesse, Douglas Bartow, Measuring Spurious Free

Dynamic Range in a D/A Converter, Intersil, Technical Brief, TB326, Jan. 1995,
Available 30.07.2018: http://www.cse.psu.edu/~chip/course/analog/lecture/SFDR2.pdf.

[5] Wikipedia, Need for 2 definitions? and Definition of the SINAD, Talk:SINAD, available
30.07.2018: https://en.wikipedia.org/wiki/Talk:SINAD

