Getting Started With DSM Grandchild Board Using VHDL

Prof. Dr. Martin J. W. Schubert, Electronics Laboratory, OTH Regensburg, Regensburg, Germany

Getting Started With DSM Grandchild Board Using VHDL

Abstract

This communication presents the DSM conversion grandchild board, which is a daughter board to the $A D A$ board, which is a daughter board to different DE1-SoC board or other DEx boards from Terasic with compatible user header, e.g. DE2, DE2-70, DE2-115.

1 Introduction

1.1 Objectives and Organization of this Document

This document illustrates how the A/D Converter (ADC) and D/A Converters (DAC) on the $A D A$ board can be assembled to form a delta-sigma ($\Delta \Sigma$) modulator (DSM) operating as ADC. This dommunication is focused to the analog part of the $\Delta \Sigma$ ADC. The significantly more complex digital part is given by the author.

This document assumes that you are familiar with the DE1-SoC board or a similar DEx board and the $A D A$ daughterboard that carries the $D S M$ board. The required introductions Getting Started with DE1-SoC Board and Getting Started with ADA Daughter Board are available from the author's homepage [15].

The organization of this document is as follows:

Section 1 is this introduction,

Section 2 makes the user familiar with the DSM board hardware,
Section 3 introduces first tests with the DSM board using software,
Section 4 assembles a $\Delta \Sigma \mathrm{A} / \mathrm{D} / \mathrm{A}$ conversion system with $A D A$ and $D S M$ boards,
Section 5 draws relevant conclusion and
Section 6 offers references.

1.2 Tools

1.2.1 DE1-SoC Hardware

This document assumes that you are familiar with the Terasic's [2] DE1-SoC board using an Intel Cyclone V FPGA [2] or a similar board DEx board with the same general-purpose input/output (GPIO) user header. The version of your DE1-SoC board can be identified at [3]. DE1-SoC board revisions F and G differ in a printed company label only. To get it from the internet, go to [4] to find and download DE1-SoC_v.5.1.2_HWrevF_SystemCD.zip [5] or a later version and download it. It contains amongst other things important documents such as DE1-SoC User Manual [6] and Schematic [7]. On the computer system of OTH Regensburg you will also find the CD on drive $\mathrm{K}: \backslash \mathrm{Sb} \backslash[8]$. Do not use any other manual revision to follow this documentation. The differences are sometimes considerable.

1.2.2 Quartus II [9] and ModelSim [10] Software Tools

It is assumed that you have Intel's ModelSim [10] and Quartus II 13 [9] software available. To download this freeware for your private PC you have to sign in at Intel [11]. At OTH Regensburg's PC pools of faculties $E I$ and $I M$ this software is installed. At faculty $E I$ also Quartus II 8 is installed supporting the older DE2 boards with Cyclone II FPGAs, because they are no longer supported for Quartus II versions greater than 13.1.

1.2.3 Use of VHDL

The IEEE standard VHDL Language reference manual [12] is difficult to read. Qualis VHDL Quick Reference Card [13] and 1164 Packages Quick Reference Card [14] are compact but difficult to understand. Feel free to find your own sources.

VHDL is not case sensitive. In the following, keywords will be written in ALL CAPItAL LETTERS and user defined names in lowercase letters. Exception: Capitalized initials are used for composed self-made names, e.g. AddressBus or DataBus. Self-made data types begin with t_{-}, e.g. t_{-}StateVector.

1.3 Acknowledgements

The author would like to thank Terasic Technologies [1] for admission to use screen copies of Terasic documentation for teaching purposes in this lectures.

```
At 19.09.2014 08:49, Terasic - Dong Liu wrote:
    Dear Martin,
    Thank you for using DE boards to teach VHDL. Yes, you can open all
    DE design resources for teaching purpose. Thank you!
    Best Regards,
    Doreen Liu
```

