



OSTBAYERISCHE TECHNISCHE HOCHSCHULE REGENSBURG

ELEKTRO- UND INFORMATIONSTECHNIK

# Getting Started With ADA Daughter Board Using VHDL

Prof. Dr. Martin J. W. Schubert, Electronics Laboratory, OTH Regensburg, Regensburg, Germany

# Getting Started With ADA Daughter Board

# Using VHDL

Abstract. This communication presents the *ADA* conversion board, which is presented as daughter board to DE1-SoC board, but is compatible with different *DEx* boards from *Terasic*, featuring the required 40 pin user header, e.g. *DE2*, *DE2-70*, *DE2-115*.

# **1** Introduction

## 1.1 Objectives and Organization of this Document

This document is intended for students learning time-discrete Signal processing, A/D and D/A conversion as well as electronic design automation using VHDL. It is a comprehensive example that teaches different aspects on the same system.

**Naming conventions.** Digital signal names containing strings *din* (digital in) or *dout* (digital out) respect the *ADA* board point of view. Signal *DAC3dout9* is a 9-level digital output signal from the *ADA* board and input to *DAC3*. Signal *adc\_din* is output from the *ADC* and a digital input signal to the *ADA* board.

The organization of this document is as follows:

Section 1 is this Introduction,

- Section 2 introduces the A/D/A conversion board used as example,
- Section 3 presents the most important A/D and D/A conversion models,
- Section 4 tests the DACs
- Section **5** tests the flash ADC
- Section 6 tests the flash ADC followed by DAC3 and measures quantization noise
- Section 7 draws relevant conclusions and
- Section 8 offers references.

### 1.2 Tools

#### 1.2.1 DE1-SoC Hardware

This document assumes that you are familiar with the *Terasic's* [1] *DE1-SoC* board using an *Intel Cyclone V FPGA* [2] or a similar *DEx* board with the same general-purpose input/output (GPIO) user header. The version of your *DE1-SoC* board can be identified at [3]. *DE1-SoC* board revisions *F* and *G* differ in a printed company label only. To get it from the internet, go to [4] to find and download *DE1-SoC\_v.5.1.2\_HWrevF\_SystemCD.zip* [5] and download it. It contains amongst other things important documents such as *DE1-SoC User Manual* [6] and *Schematic* [7]. On the computer system of OTH Regensburg you will also find the CD on drive K:\Sb\ [8]. Do not use any other manual revision to follow this documentation. The differences may be considerable.

#### 1.2.2 *Quartus II* [9] and *ModelSim* [10] Software Tools

It is assumed that you have *Intel's Quartus II 13 [9]* and *ModelSim [10]* software available. To download this freeware for your private PC you have to sign in at *Intel* [11]. At OTH Regensburg's PC pools of faculties *EI* and *IM* this software is installed. At faculty *EI* also *Quartus II 8* is installed supporting sme older *DE2* boards with *Cyclone II* FPGAs, because they are not supported for *Quartus II* versions greater than 13.1.

#### 1.2.3 Use of VHDL

The *IEEE standard VHDL Language reference manual* [12] is comprehensive and demanding to read. *Qualis VHDL Quick Reference Card* [13] and *1164 Packages Quick Reference Card* [14] are compact but difficult to understand. Feel free to find your own sources.

VHDL is not case sensitive. In the following, **KEYWORDS** will be written in **ALL CAPITAL LETTERS** and user defined names in **lowercase letters**. Exceptions are capitalized initials used for composed self-made names, e.g. *AddressBus* or *DataBus*. Self-made data types begin with  $t_{-}$ , e.g.  $t_{-}StateVector$ .

## 1.3 Acknowledgements

The author would like to thank *Terasic Technologies* [1] for admission to use screen copies of *Terasic* documentation for teaching purposes in this lectures.

```
At 19.09.2014 08:49, Terasic - Dong Liu wrote:
```

```
Dear Martin,
Thank you for using DE boards to teach VHDL. Yes, you can open all
DE design resources for teaching purpose. Thank you!
Best Regards,
Doreen Liu
```



Fig. 2.1: Schematics of the ADA daughter board



Fig. 2.2: Connectors of the ADA daughter board



(a) top view, plugged *DE1-SOC* board **Fig. 2.3:** ADA daughter board photos



(b) bottom view



(c) with DSM board

- Fig. 2.1 shows the ADA daughter board schematics.
- Fig. 2.2 illustrates the ADA board from the user header connector point of view.
- Fig. 2.3 shows photos of the ADA board with and without DSM grandchild board.

- Fig. 2.4 is related to the user headers of different *DEx* boards and maps the GPIO labels to the user header connector pins.
- Fig. 2.5 shows the production schematics of the *ADA* board with DAC schematics on the top part and other schematics on the bottom part of the figure.
- Fig. 2.6 the production layouts in top and bottom view, respectively.

Deactivate the *DSM* grandchild board under the *ADA* daughter board to avoid inferences when working with this document. This may be done in different ways, for example:

- Completely disconnect *DSM* grandchild board from *ADA* board → please be careful not to lose the small *DSM* board.
- Plug grandchild board into the unconnected parking position of the plug on the *ADA* board, which is the row with the bigger distance to the *ADA* board.

This tutorial is made for the *DE1-SoC* board. The user-header pins are assigned for compatibility to *DE2*, *DE2-70* and *DE-115* boards. Therefore pins 1, 3, 19, 21 of the user header remain unused. Figs. 2.4(a) copied from the *DE1-SoC* board's schematics [7] illustrates the user header's connectivity, while Fig. part (b) copied from the user manual [6], shows the current limitations of the on-board voltage sources  $V_{CC3P3}$  and  $V_{CC5}$ .



(b) Current limitations

| Supplied Voltage | Max. Current Limit |
|------------------|--------------------|
| 5V               | 1A                 |
| 3.3V             | 1.5A               |

Fig 2.4: *Del-SoC* user header *JP1*:

- (a) Schematics copied from [7]
- (b) Current limitations, copied from [6]





Fig. 2.5: ADA board schematics (by Markus Buchhart, 2010)



Fig. 2.6: ADA board (red) top and (blue) bottom layer layout (by M. Buchhart, 2010)

# 3 A/D and D/A Converter Modeling

Chapter 3.1 offer basic behavioral models of A/D and D/A conversion. Chapter 3.2 models the flash DACs named *DAC2* and *DAC3* on the *ADA* daughter board. Chapter 3.3 models the R2R DAC named *DAC1* used on the *ADA* daughter board

## 3.1 Basic Behavioral Models

We model a D/A converter (DAC) behaviorally as

$$U_{\textit{DAC,out}} = \sum_{i=0}^{\textit{order}} \Delta_i N^i_{\textit{DAC,in}}$$

with  $U_{DAC,out}$  and  $N_{DAC,in}$  being output voltage and digital input word, respectively. According to signal processing linearity theorem,  $\Delta_i=0$  for  $i \neq 1$ , so that a linear DAC can be modeled as

 $U_{DACout} = \Delta_1 N_{in}$ 

We model an A/D converter (ADC) behaviorally as

$$N_{ADC,out} = round\left(\sum_{i=0}^{order} \alpha_i U_{ADC,in}^i\right)$$

with  $N_{ADC,out}$  and  $U_{ADC,in}$  being digital output word and input voltage, respectively. According to signal processing linearity theorem,  $\alpha_i=0$  for  $i \neq 1$ , so that a linear ADC can be modeled as

$$N_{ADC,out} = round\left(\alpha_1 U_{ADC,in}\right).$$