

Characterizing Passive Components of a DC/DC Buck Converter

Martin J. W. Schubert

Practical Training using Board DCDCbuck_Rev12

Elektroniklabor, Ostbayerische Technische Hochschule (OTH) Regensburg, Regensburg, Germany

Characterizing Passive Components of a DC/DC Buck Converter

Abstract. The passive component RLC lowpass part of a DC/DC buck converter is characterized for understanding physical backgrounds, modeling and optimal control setting.

1 Introduction

1.1 Objectives

Goal of this practical training is the passive component characterization of a mixed analog/digital system using the example of a DC/DC buck converter with a digital control unit.

1.2 The DCDCbuck Daughter Board Hardware

Fig. 1.1: DE1-SoC board (left) with plugged-in DCDCbuck_R12.03 daughter board (right).

Fig. 1.1 shows the *DE1-SoC* board from Terasic [1-8] with *DCDCbuck_Rev10.02.06* daughter board fabricated by Florian Schwankner [10] in the Electronics Laboratory. The ribbon cable connects the input of the *DE1-SoC* on-board's *LTC2308* ADC [15] with output pins of the *DCDCbuck* boar

(a) Board photo, jumpers: red: power, blu: settings, grn: optional

Fig. 1.2: daughter board **DCDCbuck** Rev12.03.03

Bord numbering scheme: Rxx.yy.zz, with

xx: Design/Designer, yy: No. of fabricated board, zz: No. of schematics update of design yy.

Fig. 1.3(a): DCDCbuck_R12.03 board top level schematics (in KiCad software [19])

(b): DCDCbuck_R12.03 board, subcircuit power supplies

(e) Principal schematics of the DCDCbuck_R12.03 daughter board

Fig. 1.3: DCDCbuck_R12.03 board, main circuit and subcircuits

Fig. 1.4(a): DCDCbuck_R12.03 front-side copper layer (KiCad [19])

Fig. 1.4(b): DCDCbuck_R12.03 back-side copper layer (KiCad [19])

Fig. 1.5: Pin assignment of the 10-pin ADC input plug (connected by the 10 wire ribbon cable). It is a cross cable! Color code valid for $V_{CC}(ADC) =$ black. Numbers within the plug-box are the pin-numbers of the plug. Labels $ADC_IN\#$ (# = 1...8) indicate input channel number # of ADC LTC2308 [15]. ADC_IN3 is ground for board revisions $Rev \le 11.01$.

Fig. 1.5 illustrates the pin assignment of the 10-pin ADC input plug (connected by the 10 wire ribbon cable seen in the photo). Numbers within the plug-box are the pin-numbers of the plug. Label *ADC_IN#* (# = 1...8) indicates input channel number # of the ADC *LTC2308* [15]. *ADC_IN3* is ground for board revisions $Rev \le 11.01$.

1.3 Outline

The organization of this communication is as follows:

- Section 1 introduces into this document.
- Section 2 makes the student familiar with required tools.
- Section 3 characterizes the passive *RLC* lowpass (labeled *Process* in Fig. 1.3) on the isolated *DCDCbuck* daughter board.
- Section 4 draws conclusion and
- Section 5 offers references.

Getting Started with the Tools 2

This chapter makes you familiar with some basic tools and formulae.

2.1 Fundamental Electronics

2.1.1 Inductor: Extract L and series wire resistor R_w from Bode Diagram

 $X_L = sL \xrightarrow{s=j\omega} j\omega L$, consequently $L = \frac{|X_L|}{2\pi f}$

Inductor with serial wire resistor R_w :

$$L = \frac{\sqrt{\left|Z_{RL}^2\right| - R_w^2}}{2\pi f} \tag{2.1}$$

Fig. 2.1.2: *L*, *R* in series which models a real-world inductor. Example: Fig. 2.8.2.

If $R_w \ll |X_L|$ negligible: $L = \frac{\sqrt{|Z_{RL}^2| - R_w^2}}{2\pi f} \xrightarrow{|X_L| \gg R_w} \frac{|Z_{RL}|}{2\pi f} = \frac{|X_L|}{2\pi f}$ (2.2)

PS: Data sheet note R_w as DC resistor, or DCR.

2.1.2 Capacitor: Extract C and series resistor R_C from Bode Diagram

icitor with equivalent series res

 $C = \frac{1}{2\pi f \sqrt{|Z_{RC}^2| - R_C^2}}$ (2.3)

Fig. 2.1.2: *C*, *R* in series which models a real-world capacitor.

If
$$R_C << |X_C|$$
 negligible: $C = \frac{1}{2\pi f \sqrt{|Z_{R_C}^2| - R_C^2}} \xrightarrow{|X_L| >> R_w} \frac{1}{2\pi f |Z_{R_C}|} = \frac{1}{2\pi f |X_C|}$ (2.4)

PS: Data sheets label R_C as equivalent series resistor, or ESR.

2.1.3 Parallel LRC Oscillator: (*LR*||*C*: Real World Inductor)

Inductor with serial resistor *R* and parallel capacitor *C*:

$$Z_{LRC} = (R + sL) \left\| \frac{1}{sC} = \frac{R + sL}{1 + sRC + s^2 LC} \right\|$$
(2.5)

Using $s = j\omega$ delivers

$$Z_{LRC}(j\omega) = \frac{R + j\omega L}{1 - \omega^2 LC + j\omega RC}$$
(2.6)

which peaks for small time constants RC near

$$\omega_0 = \frac{1}{\sqrt{LC}} \quad \Leftrightarrow \quad f_0 = \frac{1}{2\pi\sqrt{LC}} \,. \tag{2.7}$$

2.1.4 Series *RLC* Oscillator (Real-World Capacitor)

In series with the capacitor and its resistor R_C we have a series inductor L

$$Z_{CRL}(s) = R + sL + \frac{1}{sC} = R_C + \frac{1 + s^2 LC}{sC}$$
(2.8)

and with $s = j\omega$

$$Z_{CRL}(\omega) = R - j \frac{1 - \omega^2 LC}{\omega C}.$$
(2.9)

At
$$\omega_0 = \frac{1}{\sqrt{LC}} \iff f_0 = \frac{1}{2\pi\sqrt{LC}}$$
 we get

$$Z_{CRL}(f)$$
 is minimal

and

$$Z_{CRL}(f_0) = R. \tag{2.11}$$

In summary, at the impedance minimum in the frequency domain we also have phase 0. At this point we can read the series resistor (i.e. R_C of a capacitor) and the resonant frequency f_0 .

(2.10)

Fig. 2.1.4: LRC parallel oscillator, which models a real-world capacitor. Example: Fig. 2.8.3, peak down (left).

2.2 Basic Metering

Fig. 2.2: Different BNC related measurements aids

Most measurements are based on BNC and pin cables and plugs as illustrated in Fig. 2.1.

2.3 KiCad Layout and Schematic Editor

Download the DCDC converter schematics from the author's homepage > [Schubert.OTH] > ... Edu > Labs > labs with DE1-SoC Board and Daughte Boards >Models ADA+DCDCbuck edu_R10_&12.zip >unzip Layout+Schematic >>Layout DCDCbuck Rev12.03.03 Seebauer.upd 2024s.zip > unzip >DCDCbuck R12.03.03 Seebauer.upd ordered 2024s*.brd: physical board layout

- *.*pro*: project file, from there open ->
- *.*sch*: board schematic
- *.*pcb*: board layout

2.4 HM8118 LCR Bridge for Device Characterization

LCR bridge *HM8118* [HM8118] is available in the electronics lab and suitable to measure components such as capacitors and inductors. Check for the *HM8118 LCR* bridge in the lab and measure some arbitrary inductors and capacitors.

Note that we measure series resistors only, so the *MODE* button must be *AUTO* and/or *SER*. Typically it is enough to press *AUTO* and let the *HM8118* detect the rest.

Fig. 2.4: Measuring a capacitor and its equivalent series resistor with HM8118

2.5 Screen Copies with *Microsoft Windows 10*

Screen copies with *MS Windows 10* can be made with the snipping tool: Start menu: $\Box \to$ hit keys "*sn*" \to (Snipping tool opens) \to *New* \to (draw the widow to copy) \to *File* \to *Save as* \to (filename). From the authors experience Snipping tool screen copies make smallest file sizes with *PNG* formatted files

M. Schubert

2.6 Waveform Generator (DSO-X 2024A)

Use the waveform generator within oscilloscope DSO-X 2024 [DSO-X 2024A] if available.

Observe generated waveforms by connecting GEN OUT with input channel 1 (CH1).

Measure the output impedance of your waveform generator. For more background information on this measurement see [I/O-Imp] at the author's homepage > Offered Education > Lessons > Characterization > Considering I/O Impedances.

- Create any waveform or a DC voltage with the waveform generator. Note the unloaded output voltage as U_{Gint} , which is measured as U_{Gext} with no load, i.e. $R_L \rightarrow \infty$, in Tab. 2.6.
- Load the source with a load resistor R_L , which should be of similar size as the output impedance to be measured, i.e. for typical waveform generators $R_L \sim 50\Omega$. Use an Ohmmeter to determine R_L exactly. Note the results in table 2.6.
- Measure U_{Gext} with load resistor and compute $\alpha = U_{Gext} / U_{Gint}$.
- Compute R_G from $R_G = \frac{1-\alpha}{\alpha} R_L$.

Bench # 00	ideal	real		formula	ideal	real
UGint	2 V	1 V		XXX	XXX	XXX
UGext	1 V	499 mV		$\alpha = \frac{U_{Gext}}{U_{Gint}}$	0.5	0.499
RL	50 Ω	50.3 Ω		$R_G = \frac{1 - \alpha}{\alpha} R_L$	50 Ω	50.5 Ω

Table 2.6: Computing output impedance of waveform generator

Listing 2.6: Matlab code computing the generator's output resistor R_G .

```
% Computing an output Resistor
UGint = 1;
UGext = 499e-3;
RL = 50.3;
alpha = UGext / UGint;
RG = RL*(1-alpha)/alpha;
```


Fig. 2.6: Waveform generator with inner resistor R_G , external load resistor R_L , assumed inner generator voltage U_{Gint} and measured external voltage U_{Gext} .

2.7 Oscilloscope (DSO-X 2024A)

Use the waveform generator within oscilloscope.

- Generate a sinusoidal waveform and observe it with channel 1 (CH1) of your oscilloscope.
- Feed the same signal over a shunt resistor of $R_s = 1 \text{ M}\Omega$ to channel 2 (CH2) as illustrated in Fig. 2.7.
- Measure the voltage drop of CH2 versus CH1 at low frequencies. To avoid the measurement of noise, it might be the best to measure the *RMS value of N cycles* with the oscilloscope. The voltage drop should be some 50%, e.g. from $2V \rightarrow 1V$.
- Increase frequency until you observe further -3dB (i.e. factor $1/\sqrt{2}$) decrease compared to DC-amplitudes, measured at 10Hz, e.g. from $1V \rightarrow 0.71V$

Bench #	ideal	real		formula	ideal	real
Uch1(f)	2 V	703 mV		$R_{in} = \frac{\alpha}{1 - \alpha} R_S$	1 MΩ	996 KQ
Rs	1 MΩ	1.01MΩ		$R_p = R_S \mid\mid R_{in}$	500 KΩ	501 ΚΩ
Uch2(10Hz)	1 V	349mV		$f_p = f\left(\frac{U_{Ch2,DC}}{\sqrt{2}}\right)$	29 KHz	~29 KHz
$\alpha = \frac{U_{Ch2}(10Hz)}{U_{Ch1}}$	1/2	0.4964		$C_{in} = \frac{1}{2\pi f_p R_p}$	11 pF	~12 pF

 Table 2.7: Computing input impedance of waveform generator

2.8 *Bode* Diagram Measurements Using *Bode100*

2.8.1 Transfer Function Measurements

This chapter helps you getting started with using the *Bode100* [Omicron] instrument and the *Bode Analyzer Suite* [Bode100] operating it. At Bode100 hardware, do not remove the BNC cable connecting *OUTPUT* with *CH1* input unless you are explicitly asked to do so.

Connect the *Bode100 OUTPUT* to oscilloscope *CH1* input. Let *Bode100* output 0 dB (e.g. at 1KHz). To what effective ("*rms*") voltage and peak-to-peak voltage does that correspond?

 $Bode100 \ OUTPUT = 0 \ dB \ correspond to: U_{rms}(0dB) = 447mV \iff U_{pp} = 1.26V$

What power will this output dissipate at a 50Ω load? (Consider the 50Ω output impedance.)

 $P_{out} = U^2 / R = (0.447V/2)^2 / 50\Omega = 1mW$

Measure with DSO-X 2024A oscilloscope

- Press button: *Autoscale*
- Meas > Add measurement > Source 1, Type: Peak Peak
- Meas > Add measurement > Source 1, Type: AC RMS, N Cycles

Gain/Phase measurement with *Bode100* (according to Fig. 2.8.1)

- Use a short *BNC* cable to connect *OUTPUT* with *CH2* input.
- Start *Bode Analyze Suite* while *Bode100* being on and connected to your PC.
- Start a *Gain/Phase* measurement with default settings
- Shut down *Bode Analyze Suite* discarding changes.

Impedance Analysis with Bode100

- Plug a 50Ω BNC termination resistor onto the Bode100 output
- Restart *Bode Analyze Suite*, select *Impedance Analysis > Start Measurement* with default settings.
- Click into the *Bode* diagram and select *Optimize* with right mouse button.

Note: The File \rightarrow Save [as] command of *Bode100* saves both setup and measured data.

Exercise: Perform a *One-Port Impedance Analysis* at any capacitor, as illustrated in Fig. 2.8.2. Compute the capacitance and its parasitic series inductance.

Fig. 2.8.1: Measure a *Bode* diagram with *Bode100* operated with *Bode Analyzer Suite 3* [Bode100], *Gain/Phase* Measurement.

M. Schubert

2.8.2 OnePort Impedance Measurement: Cable BNC - pin

- (a) Right: Photo of the measurement setup.
- (b) Bottom: *One-Port Impedance* measurement with *Bode100*. We see a parasitic inductor at high frequencies.

Fig. 2.8.2: Bode100 One-Port Impedance measurement of some mm of wire.

The One-Port Impedance measurements at straight logarithmic slopes delivers ...

at f = 100Hz: $R_{cable} = \dots$ 183 m Ω

$$f = 2MHz: X_L = R_w + j\omega L \to L = \frac{\sqrt{|X_L|^2 - R_w^2}}{2\pi f} = 560 \text{ nH} \cong \frac{|X_L|}{2\pi f} = \frac{7.048\Omega}{2\pi \cdot 2MHz} = 564 \text{ nH}$$

2.8.3 OnePort Impedance Measurement: Capacitor BNC - pin

- (a) Right: Photo of the measurement setup.
- (b) Bottom: *One-Port Impedance* measurement with *Bode100*. We see a capacitor at low frequencies and a parasitic inductor at high frequencies.

Fig. 2.8.3: Bode100 One-Port Impedance measurement of a capacitor of nominal 10 µF.

The One-Port Impedance measurements at straight logarithmic slopes delivers ...

at f = 100Hz:
$$X_C \cong \frac{1}{j\omega C} \rightarrow C \cong \frac{1}{2\pi f |X_C|} = \frac{1}{2\pi \cdot 100 Hz \cdot 15.792\Omega} = 10.08 \ \mu F$$

at f = 2MHz: $X_L \cong j\omega L \rightarrow L \cong \frac{|X_L|}{2\pi f} = \frac{6.087\Omega}{2\pi \cdot 2MHz} = 484 \ nH$

How do you explain that inductor L is smaller now than above with the short only? Wire opening. Measure short again with wires close together!