

Characterizing Passive Components of a DC/DC Buck Converter

Martin J. W. Schubert

Practical Training using Board DCDCbuck_Rev10.02

Elektroniklabor, Ostbayerische Technische Hochschule (OTH) Regensburg, Regensburg, Germany

Characterizing Passive Components of a DC/DC Buck Converter

Abstract. The passive component RLC lowpass part of a DC/DC buck converter is characterized for understanding physical backgrounds, modeling and optimal control setting.

1 Introduction

1.1 Objectives

Goal of this practical training is the passive component characterization of a mixed analog/digital system using the example of a DC/DC buck converter with a digital control unit.

1.2 Requirements

1.2.1 Hardware

It is assumed that we have the following hardware:

- DCDCbuck_Rev10⁾ board, selfmade in electronics lab of OTH Regensburg [1], [2].
- LoopGain_Rev1.5.4 board, selfmade in electronics lab of OTH Regensburg [3]
- *DE1-SoC* board from *Terasic* [1],
- Bode 100 network analyzer and B-WIT 100 injection transformer of Omicron Lab [2].

1.2.2 Knowledge

It is assumed that you are familiar with document "Getting Started With *DCDCbuck* Board" [DCDCbuck] available from the author's homepage [Schubert.OTH].

1.3 System Setup

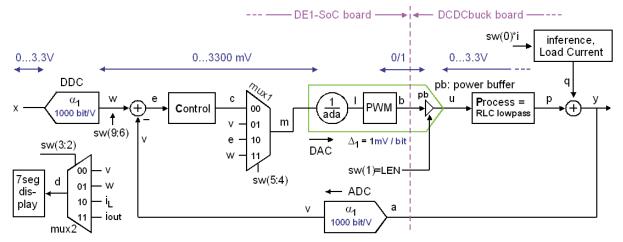


Fig. 1: The DC/DC buck converter setup for first tests.

Fig 1 illustrates the DC/DC step-down conversion system with a digital part on the left hand side of the vertical dashed (pink) line, and an analog part on the right hand side.

The digital part in Fig. 1 is left of the vertical, dashed, pink line is illustrated as block diagram. It is realized with or controlled by *VHDL* [VHDL]. The code is synthesized and downloaded into the *Cyclone V FPGA* [Cyclone-V] on a *DE1-SoC* board [Terasic]. The main blocks of the digital part sketched in Fig. 1 are:

- A controller with control transfer function CTF(z) = C(z)/E(z), whereas capital letters indicate frequency domain notification.
- Analog-to-digital converter (ADC) *LTC2308* [LTC2308] being a part of *DE1-SoC* board.
- A digital-do-analog converter (DAC), which is a selfmade pulse-width modulator (PWM). Factor (1/*ada*) incorporated into the DAC compensates for different amplifications of ADC and DAC, such that ADC and DAC in series deliver an amplification of 1.
- Multiplexer *mux1* allowing to feed different inner signals to the PWM DAC,
- Multiplexer *mux2* feeding different inner signal to the six-digit 7-segment display which is a part of the *DE1-SoC* board.
- The digital-to-digital converter (DDC), which is a hypothetical device for mathematical consideration. It is scaled such that y = x for infinite loop gain.

Due to the division by *ada*, the gain of A/D and D/A converters in series is equal to one.

1.4 Acknowledgements

The author would like to thank *Omicron Lab* [Omicron Lab] for supporting this document with kind support and allowing to use figures from Omicron documentation.

1.5 Outline

The organization of this communication is as follows:

- Section 1 introduces into this document.
- Section 2 makes the student familiar with required tools.
- Section 3 characterizes the passive *RLC* lowpass (labeled *Process* in Fig. 1.3) on the isolated *DCDCbuck* daughter board.
- Section 4 draws conclusion and
- Section 5 offers references.

M. Schubert

2 Getting Started with the Tools

This chapter makes you familiar with some basic tools and formulae.

2.1 Fundamental Electronics

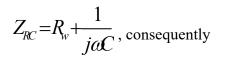
2.1.1 Inductor: Extract L and series wire resistor R_w from *Bode* Diagram

 $X_L = sL \xrightarrow{s=j\omega} j\omega L$, consequently $L = \frac{|X_L|}{2\pi f}$

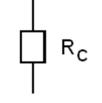
Inductor with serial wire resistor R_w :

$$Z_{RL} = R_w + j\omega L$$
, consequently

$$L = \frac{\sqrt{\left|Z_{RL}^2\right| - R_w^2}}{2\pi f} \tag{2.1}$$


Fig. 2.1.2: *L*, *R* in series which models a real-world inductor. Example: Fig. 2.8.2.

If $R_w \ll |X_L|$ negligible: $L = \frac{\sqrt{|Z_{RL}^2| - R_w^2}}{2\pi f} \xrightarrow{|X_L| \gg R_w} \frac{|Z_{RL}|}{2\pi f} = \frac{|X_L|}{2\pi f}$ (2.2) PS: Data sheet note R_w as DC resistor, or DCR


PS: Data sheet note R_w as DC resistor, or *DCR*.

2.1.2 Capacitor: Extract C and series resistor R_C from Bode Diagram

Capacitor with equivalent series resistor R_C :

 $C = \frac{1}{2\pi f \sqrt{\left|Z_{RC}^{2}\right| - R_{C}^{2}}}$ (2.3)

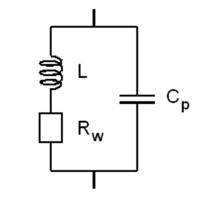
Fig. 2.1.2: *C*, *R* in series which models a real-world capacitor.

If $R_C \ll |X_C|$ negligible: $C = \frac{1}{2\pi f \sqrt{|Z_{RC}^2| - R_C^2}} \xrightarrow{|X_L| \gg R_w} \frac{1}{2\pi f |Z_{RC}|} = \frac{1}{2\pi f |X_C|}$ (2.4)

PS: Data sheets label R_C as equivalent series resistor, or ESR.

2.1.3 Parallel LRC Oscillator: (*LR*||*C*: Real World Inductor)

Inductor with serial resistor *R* and parallel capacitor *C*:


$$Z_{LRC} = (R + sL) \left\| \frac{1}{sC} = \frac{R + sL}{1 + sRC + s^2 LC} \right\|$$
(2.5)

Using $s = j\omega$ delivers

$$Z_{LRC}(j\omega) = \frac{R + j\omega L}{1 - \omega^2 LC + j\omega RC}$$
(2.6)

which peaks for small time constants RC near

$$\omega_0 = \frac{1}{\sqrt{LC}} \quad \Leftrightarrow \quad f_0 = \frac{1}{2\pi\sqrt{LC}} \,. \tag{2.7}$$

2.1.4 Series *RLC* Oscillator (Real-World Capacitor)

In series with the capacitor and its resistor R_C we have a series inductor L

$$Z_{CRL}(s) = R + sL + \frac{1}{sC} = R_C + \frac{1 + s^2 LC}{sC}$$
(2.8)

and with $s = j\omega$

$$Z_{CRL}(\omega) = R - j \frac{1 - \omega^2 LC}{\omega C}.$$
(2.9)

At
$$\omega_0 = \frac{1}{\sqrt{LC}} \iff f_0 = \frac{1}{2\pi\sqrt{LC}}$$
 we get

$$Z_{CRL}(f)$$
 is minimal

and

$$Z_{CRL}(f_0) = R.$$

$$(2.11)$$

In summary, at the impedance minimum in the frequency domain we also have phase 0. At this point we can read the series resistor (i.e. R_C of a capacitor) and the resonant frequency f_0 .

(2.10)

Fig. 2.1.4: LRC parallel oscillator, which models a real-world capacitor. Example: Fig. 2.8.3, peak down (left).

2.2 Basic Metering

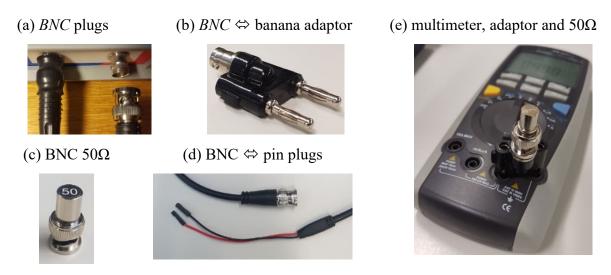


Fig. 2.2: Different BNC related measurements aids

Most measurements are based on BNC and pin cables and plugs as illustrated in Fig. 2.1.

2.3 Eagle Layout and Schematic Editor

Download the DCDC converter schematics from the author's homepage > [Schubert.OTH] >...*Edu* > *Labs* > *DE1-SoC Board* > *DCDCbuck* > DCDCbuck board,... Rev.10.02.06: <u>Eagle7.zip</u>, <u>Eagle9.zip</u>. Unpack the *zip* file to get the two files

- *.*brd*: physical board layout
- *.*sch*: board schematic

Opening one of them with *Eagle* [Eagle] software typically opens both.

- Se both layout and schematics view: Click on the symbol to pop-up the other view
- Understand the layers: brown is top, blue is bottom metal and green is via (connection).
- Activate *View* (German: *Ansicht*) in both windows. Then click on a metal in the *layout window* and observe how the corresponding wire in the *schematic window* is highlighted and vice versa.

2.4 HM8118 LCR Bridge for Device Characterization

LCR bridge *HM8118* [HM8118] is available in the electronics lab and suitable to measure components such as capacitors and inductors. Check for the *HM8118 LCR* bridge in the lab and measure some arbitrary inductors and capacitors.

Note that we measure series resistors only, so the *MODE* button must be *AUTO* and/or *SER*. Typically it is enough to press *AUTO* and let the *HM8118* detect the rest.



Fig. 2.4: Measuring a capacitor and its equivalent series resistor with HM8118

2.5 Screen Copies with *Microsoft Windows 10*

Screen copies with *MS Windows 10* can be made with the snipping tool: Start menu: $\Box \to$ hit keys "*sn*" \to (Snipping tool opens) $\to New \to$ (draw the widow to copy) $\to File \to Save as \to$ (filename). From the authors experience *Snipping* tool screen copies make smallest file sizes with *PNG* formatted files