

Characterizing Loop Gains of a DC/DC Buck Converter with Digital Voltage-Mode Control

Martin J. W. Schubert

Practical Training using Board DCDCbuck_Rev12

Elektroniklabor, Ostbayerische Technische Hochschule (OTH) Regensburg, Regensburg, Germany

Characterizing Loop Gains of a DC/DC Buck Converter with Digital Voltage-Mode Control

Abstract. Optimal PID frequency compensation of a digitally controlled DC/DC buck converter.

1 Introduction

1.1 Objectives

Goal of this practical training is to characterize the loop gain and set the digital PID frequency compensation unit of a DC/DC buck converter.

1.2 The DCDCbuck Daughter Board Hardware

Fig. 1.1: *DE1-SoC* board (left) with plugged-in *DCDCbuck_R12.03* daughter board (right).

Fig. 1.1 shows the *DE1-SoC* board from Terasic [1-8] with *DCDCbuck_Rev10.02.06* daughter board fabricated by Florian Schwankner [10] in the Electronics Laboratory. The ribbon cable connects the input of the *DE1-SoC* on-board's *LTC2308* ADC [15] with output pins of the *DCDCbuck* boar

(a) Board photo, jumpers: red: power, blu: settings, grn: optional

Fig. 1.2: daughter board **DCDCbuck** Rev12.03.03

Bord numbering scheme: Rxx.yy.zz, with

xx: Design/Designer, yy: No. of fabricated board, zz: No. of schematics update of design yy.

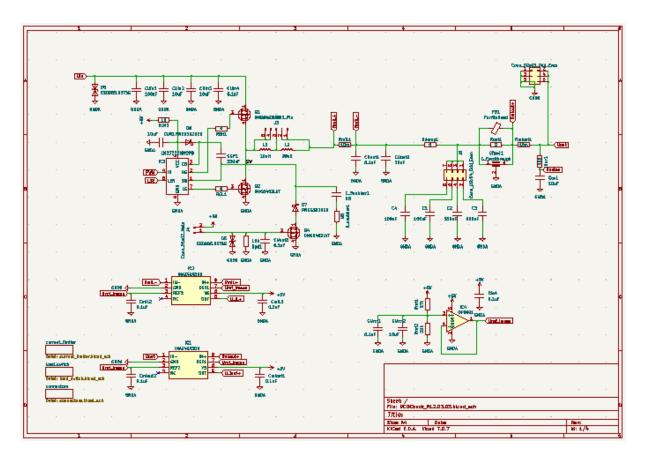
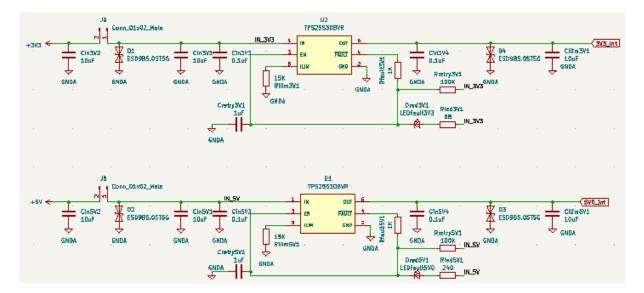
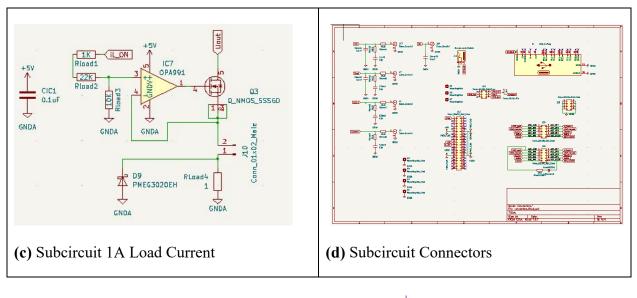
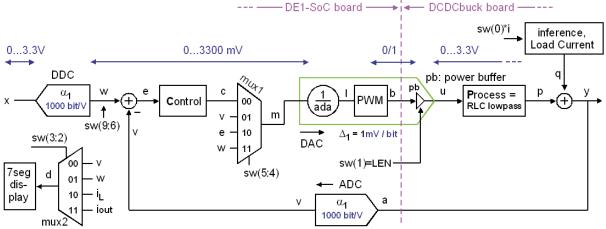





Fig. 1.3(a): DCDCbuck_R12.03 board top level schematics (in KiCad software [19])

(b): DCDCbuck_R12.03 board, subcircuit power supplies

(e) Principal schematics of the DCDCbuck_R12.03 daughter board

Fig. 1.3: DCDCbuck_R12.03 board, main circuit and subcircuits

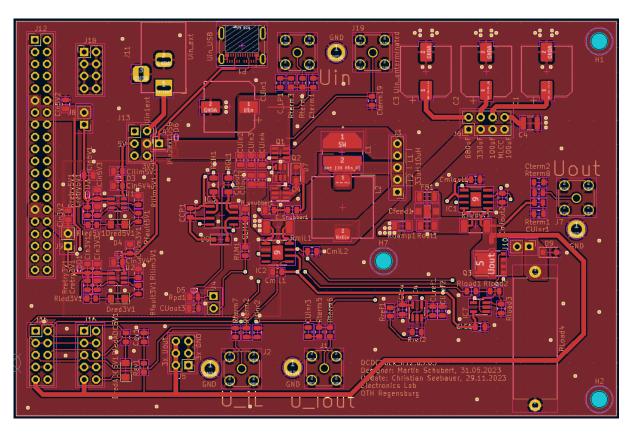


Fig. 1.4(a): DCDCbuck_R12.03 front-side copper layer (KiCad [19])

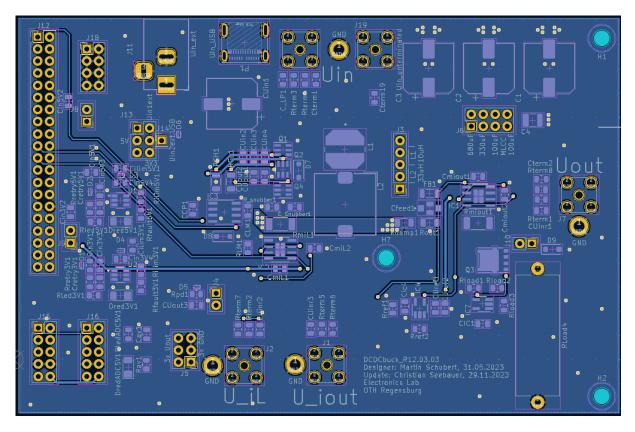
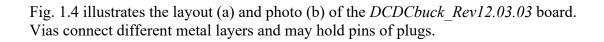
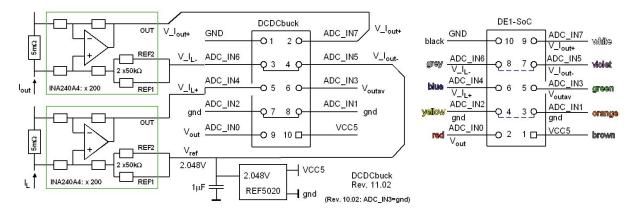




Fig. 1.4(b): DCDCbuck_R12.03 back-side copper layer (KiCad [19])

Fig. 1.5: Pin assignment of the 10-pin ADC input plug (connected by the 10 wire ribbon cable). It is a cross cable! Color code valid for $V_{CC}(ADC) =$ black. Numbers within the plug-box are the pin-numbers of the plug. Labels $ADC_IN\#$ (# = 1...8) indicate input channel number # of ADC LTC2308 [15]. ADC_IN3 is ground for board revisions $Rev \le 11.01$.

Fig. 1.5 illustrates the pin assignment of the 10-pin ADC input plug (connected by the 10 wire ribbon cable seen in the photo). Numbers within the plug-box are the pin-numbers of the plug. Label *ADC_IN#* (# = 1...8) indicates input channel number # of the ADC *LTC2308* [15]. *ADC_IN3* is ground for board revisions $Rev \le 11.01$.

1.3 Outline

The organization of this communication is as follows:

- Section 1 introduces into this document.
- Section 2 offers some theoretical background.
- Section 3 measures loop gains on the open loop.
- Section 4 mesures loop gains on the closed loop using the *Middlebrook* method.
- Section 5 compares and discusses the measured results achieved in chapters 3 and 4.
- Section 6 draws conclusion and
- Section 7 offers references.

M. Schubert

2 Theoretical Backgrounds

Please read this Chapter 2 at home before coming to the practical training.

Do not spend your time in the lab with learning theoretical backgrounds!

Greyed out texts are optional. They explain the significance of the measurements for setting PID control parameters, but are not required for theis practical training.

2.1 Loop Model

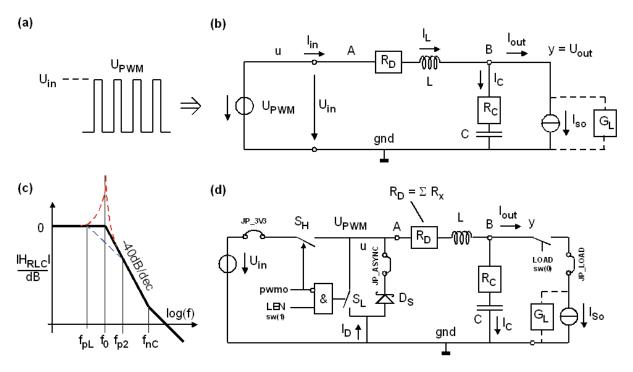
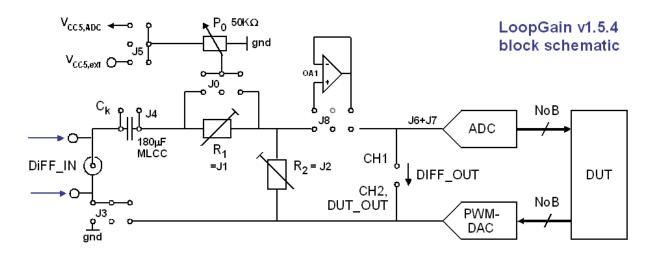
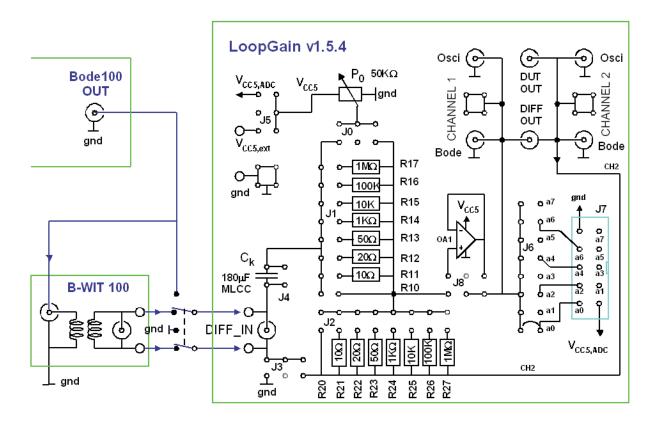
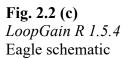
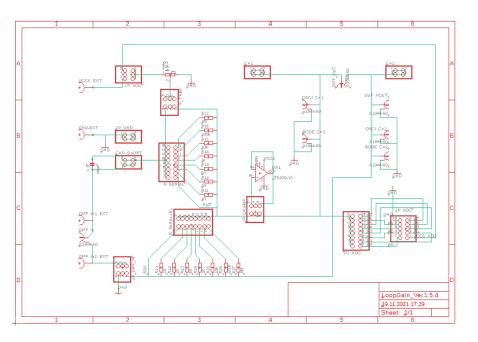



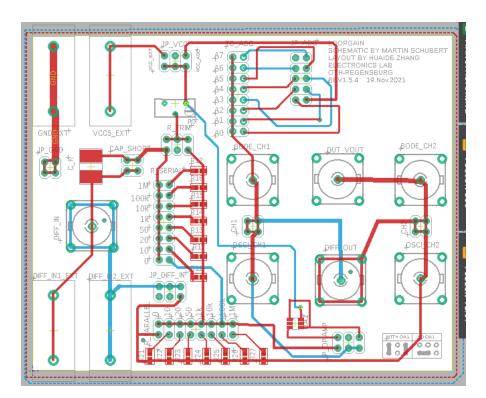
Fig. 2.1: *RLC* lowpass corresponding to boxes *Process* and *Inference* in Fig. 1.1 (a) PWM signal, (b) schematic with U_{PWM} generator, load current source I_{so} and its output conductance G_L , which is assumed to be negligible in this case, (c) amplitude diagram, (d) schematic illustrating generator switches and sync/async functionality of signal LEN = LSE = sw(1).

2.2 Loop Gain Measurement Circuit

(a) *LoopGain R 1.5.4* board schematic block model

(b) LoopGain R 1.5.4 boad detailed schematic model


Fig. 2.2: LoopGain R 1.5.4 board

- (a) Schematic block model
- (b) Detailed schematic model
- (c) Eagle schematic (created by Huade Zhang)
- (d) Eagle layout of created by Huade Zhang

Fig. 2.2 (d) *LoopGain R 1.5.4* Eagle layout

2.3 Setting of Switches (sw) and Push Buttons (key)

Table 2.3: Functionality of switches *sw*(9:0) and push buttons *key*(3:0)

9	8	7	6	5	4	3	2	1	0
Set po	pint (wa	nted) w	in mV	DAC in	np. sel	7seg :	inp. sel	LSE	iLoad
Switches									
sw(9:6)		Select set point x in V							
0000		point w							
0001		point w							
0010		point w							
0011		point w							
0100		point w							
0101		point w							
0110		point w							
0111		point w							
1000		point w							
1001 1010		point w							
1010		point w point w							
1100									
1100		Set point $w = 2750$							
1110		Set point $w = 3000$ Set point $w = 3300$							
1111		Set point $w = 3300$ Set point w : defined by the HPS ^{*)} using Linux program set w;							
	000	Set point w . defined by the <i>MFS</i> during <i>MMax</i> program set_w, Set-point values out of range 2mVVin will be							
		modified to 1234 mV.							
							in the FPG	A	
sw(5:4)	Sele	ct quant			input o				
00		rol mode			-				
01	cont	control mode => output v							
10	cont	control mode => output e							
11		control mode => output w							
sw(3:2)		Select quantity displayed on 7-segment display							
00	disp	display v in mV : label U -> output voltage							
01	disp	display w in mV : label i(nput) -> wanted output voltage							
10	-	display i_L in mA : label L -> sampled inductor current							
11		display i_{out} in mA \therefore : label o -> sampled output current							
sw(1)		Low-sid							
0		Asynchronous mode: Low-side power-MOSFET is always off.							
1		Synchronous mode: Low-side switch is ready to operate							
sw(0)		Load current switch							
0		Load current OFF							
1	Load	current	t of 1A	ON					

Keys	(=push buttons)
key(0)	Global asynchronous reset, dominant over all other signals:
	all flipflops are reset to their reset-states
key(1)	Global enable: flipflops do not change state when key(1) pushed
key(2)	Load current ON: pushing key(2) has the same effect as
	sw(0)='1'; current flow stops when $key(2)$ is released.
key(3)	hold 7-segment display: 7seg-display frozen while key(3) pushed

Mini keys	(small push buttons), functionality according to [24].
left	HPS reset, restarts the hard processor system
middle	HPS User button, restarts the hard processor system
right	warm reset

2.4 Naming Scheme for Files Measured with *Bode100*

Table 2.4: Naming scheme of measured files required for plotting with Matlab program

Files ¹⁾ , ²⁾ within zip-file	method	chapter	Comment
Characterize_LoopGains_DCDCbuck.m		3, 4	Matlab script file
OL1 DCDCbuck RLC.csv	3)	3.1	RLC only
OL2 DCDCbuck ADC RLC DAC.csv	3)	3.2	ADC + RLC + DAC
OL3 DCDCbuck Kp=1,Ki=Kd=0.csv	3)	3.3	open loop, $K_p=1$
OL4 DCDCbuck Kp=10,Ki=Kd=0.csv	3)	3.4	open loop, $K_p=10$
OL5_DCDCbuck_Kp=100,Ki=Kd=0.csv	3)	3.5	open loop, $K_p=100$
MB3_DCDCbuck_Kp=1,Ki=Kd=0.csv	4)	4.3	closed loop, $K_p = l$
MB4_DCDCbuck_Kp=10,Ki=Kd=0.csv	4)	4.4	closed loop, $K_p = 10$
MB5_DCDCbuck_Kp=100,Ki=Kd=0.csv	4)	4.5	closed loop, $K_p = 100$
MB6 DCDCbuck Kp=10,fix=1e3,Kd=0.csv	4)	4.6	cl. 1., $K_p = 10$, $K_i = 2\pi f_{ix}$

¹⁾ To translate a file of type *.bode3 to a "comma-separated value" (csv) file, open a bode3 file in the Bode Analyzer Suite, select File > Export > Field separator comma > Save as...

²⁾ Unzip the author's file *Characterize_LoopGains_DCDCbuck.zip* to find the listed files (filled with noise) and run the *Matlab* script *Characterize_LoopGains_DCDCbuck.m*.

- ³⁾ OL# files are measured with the Open Loop technique used in section 4.
- ⁴⁾ MB# files are measured with the Middlebrook technique presented in section 5.

Fig. 2.4 illustrates the target graphics to illustrate your measurements.

To make things work the file names must exactly match the file names listed in the table above, which are given in the zip file with same name.

The given data files contain noise. Replace them by your measurements.

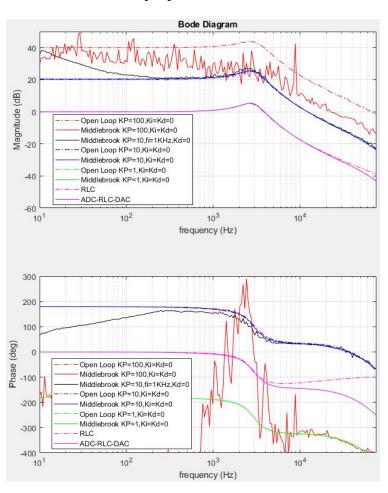
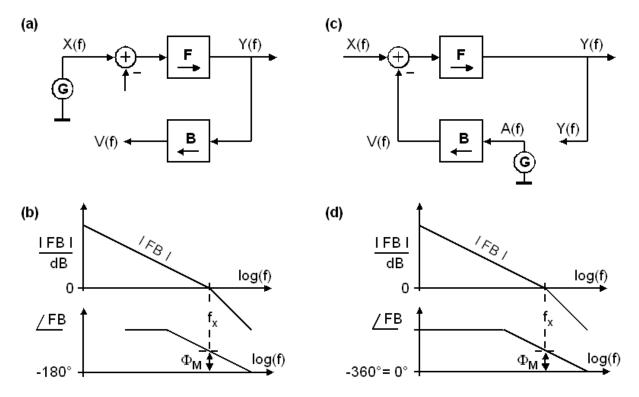



Fig. 2.4: Target graphics

2.5 Stability: Cross-Over Frequency f_x and Phase Margin Φ_M

Fig. 2.5: Measurement of phase margin Φ_M of the (open) loop gain with (a) '-' sign excluded against (b) -180° and for (c) '-' sign included against (d) -360° = 0°.

The closed loop formula

$$STF = \frac{F}{1 + F \cdot B} \xrightarrow{|FB| \to \infty} B^{-1}$$

with *F* and *B* being the total feed forward and feedback network, respectively, becomes an oscillator when the denominator becomes zero, i.e. when $FB = -1 = 1 \cdot e^{j180^\circ}$.

Cross-over (or transit) frequency. The frequency where |FB| becomes unity is said to be the cross over frequency f_x (or transit frequency f_T), i.e. $|FB(f_x)| = 1 = 0$ dB.

The phase margin Φ_M is measured at f_x and is the phase distance from the harmonic oscillator. It should be $\Phi_M \ge 45^\circ$. The 45° is measured

- versus -180° in the situation of Fig. 2.5(a), consequently $FB(f_x) = 1 \cdot e^{j(-180^\circ + \Phi_M)}$,
- versus $-360^\circ = 0^\circ$ in the situation of Fig. 2.5(b), consequently $FB(f_x) = 1 \cdot e^{j\Phi_M}$.

2.6 Background: Compensator Modeling

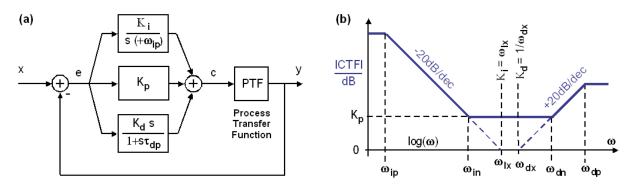


Fig. 2.6: Compensator design (a) Schematic block model and (b) Bode diagram

The control unit, also termed compensator as a microcontroller is a very wide broad term, is typically designed in the *PID* form, with *P* standing for proportional, *I* for integral and *D* for differential. The compensator transfer function is typically written in the form

$$CTF(s) = K_p + \frac{K_i}{s} + K_d \cdot s$$
.

Frequently we find, that an additional differentiator pole is required for stability and an integrator pole is unavoidable, e.g. due to limited amplification, yielding

$$CTF(s) = K_p + \frac{K_i}{s + \omega_{ip}} + K_d \cdot \frac{s}{1 + s \cdot \tau_{dp}} \quad \text{with} \quad \tau_{dp} = \frac{1}{\omega_{dp}}$$

with ω_{ip} being undesirable but unavoidable and typically not modeled except in *Spice*-like tools, where a tiny ω_{ip} is required to avoid divide-by-zero errors during DC or operating point computation. Using $\omega_{ip} = 0$ we can rewrite the compensator transfer function as

$$CTF(s) = K_p + \frac{\omega_{ix}}{s} + \frac{s}{\omega_{dx}} \cdot \frac{s}{1 + s / \omega_{dp}}$$

to make the 0 dB crossover frequencies $\omega_{ix} = K_I$ and $\omega_{dx} = 1/K_D$ visible. Conclusion of

$$\begin{split} f_{ix} &= \frac{\omega_{ix}}{2\pi} = \frac{K_i}{2\pi} , \\ f_{dx} &= \frac{\omega_{dx}}{2\pi} = \frac{1}{2\pi \cdot K_d} \quad \Leftrightarrow \quad K_d = \frac{1}{\omega_{dx}} \\ f_{dp} &= \frac{\omega_{dp}}{2\pi} = \frac{1}{2\pi \cdot \tau_{dp}} \end{split}$$

is obvious. Furthermore, it is seen from Fig. 2.6(b) that we get the compensator transferfunction zeros

$$f_{in} = \frac{f_{ix}}{K_p} = \frac{\omega_{ix}}{2\pi K_p} = \frac{K_i}{2\pi K_p},$$
$$f_{dn} = f_{dx} \cdot K_p = \frac{\omega_{dx} \cdot K_p}{2\pi} = \frac{K_p}{2\pi \cdot K_d}.$$

3 Loop Gain Measurement with Open Loop

This is an introduction; practical work begins at Chapter 3.1!

Knowing loop-gain over frequency is a key information for optimal *P*, *PI* and *PID* control parameter setting. We shall try to measure loop gain on the open loop in this chapter.

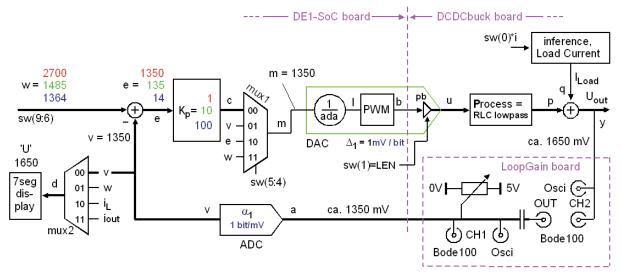


Fig. 3.0: General setup for open-loop gain measurement

General Remarks:

- Key importance: Check on the oscilloscope, that Uout delivers a sinusoidal signal!
- Set *Bode100's* receiver 1 and 2 attenuators such that the volume bars stay green and as big as possible, but never become red!
- The 7-segment display shows process variable *v*, the ADC output, indicated as 'U'.
- Set switches sw(9:6) such, that U_{out} oscillates ca. around 1350 mV.

Set input *w* according to Fig. 3.0

We want to have $U(a) = U_{ADCin} \cong 1350 \text{ mV}$ and $m \cong U_{out} \cong 1350 \text{ mV}$. In Fig. 3.0 we see that $e = m / K_p$. to compute first the values for *e* required to achieve $K_p = \{1, 10, 100\}$. Compute in table 3.0 below the required setting voltage *w* to get for the different values of K_p Complete the fields in table 3.0 and ...

Set the required values *w* with the embedded system. (If no embedded available, the nearest *w*).

	1			ľ	
K _p =	m =	$e = m/K_p =$	v =	w = v + e =	in section
1	1350	1350	1350	2700	3.3
10	1350	135	1350	1485	3.4
100	1350	13.5 \rightarrow 14	1350	1364	3.5

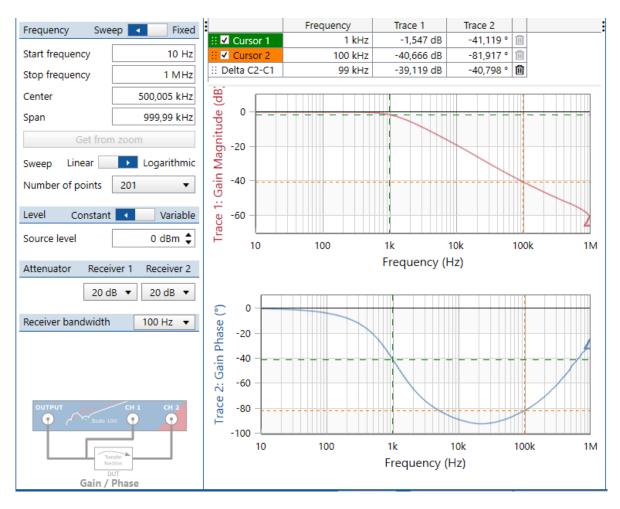
Table 3.0: compute e and w for the different values of K_p .

Why do we need the LoopGain board (Nice to know)

The *LoopGain* board is necessary, because the *Bode100* cannot deliver a DC offset voltage: The capacitor following *Bode100's* output in Fig. 3.0 allows the potentiometer at its other terminal to build up a DC voltage on wire *a* (ADC input), labeled in Fig. 3.0 with 1350mV as ADC input operating point. To keep the impact of the DC-blocking capacitor out of the loopgain measurement, *Bode100's OUT* and *CH1* input have to be separated in this exceptional case.

Why U_{out} = 1350 mV? (Nice to know)

To operate the high-side switch of the PWM buffer amplifier, labeled *pb* in Fig. 3.0, the PWM signal must pulsate with minimum low- and high-level periods. Therefore, the maximum pulse width is limited by software to 270 of 330 PWM slots. Using $U_{in} = 3.3$ V the maximum achievable average output voltage is $U_{out,max} = 2700$ mV. The low-side switch can be operated for any U_{out} . Consequently, the center of the available output voltage range is $U_{out,mid} = (2700 \text{ mV} - 0 \text{ mV})/2 = 1350 \text{ mV}.$


To do with Matlab during the following measurements

In the library *Models_ADA+DCDCbuck_edu* you will find in directory *Matlab* subdirectory *Characterize_LoopGains_DCDCbuck* provided by the author. It contains the *Matlab* script file *Characterize_LoopGains_DCDCbuck.m* and the 9 *.*csv* files listed in table 2.4. Run the Matlab script file *Characterize_LoopGains_DCDCbuck.m* within the directory of the same name (extracted from the zip file with this name). *Matlab* should not deliver an error message, but a graphic containing noisy data delivered by the dummy *.*csv* files. In the next chapters you will override the given noise files with your measured data to achieve meaningful loop-gain *Bode* plots

M. Schubert

3.1 Measurement of the *RLC* Lowpass

(a) Transfer Function of the RLC lowpass (PTF) measurement with Bode100

(b) Measurement setup

Fig 3.1: Characterization of the RLC lowpass of the *DCDCbuckR10* board Detach the *DCDCbuck* board from the *DE1-SoC* board to be sure that all voltages are zero and both power-FETs driving the RLC lowpass are high impedant. Use the *Bode100 transmission* mode to get the transfer function of the RLC lowpass.

This lowpass transfer function corresponds to the *Plant* or *Process* of our control loop.

Fig 3.1 shows a measurement performed with *Bode100* of the *RLC* lowpass only with *DCDCbuck* board (Rev.5) being disconnected from any other device.

- Cursor 1 is at the position measured as f_0 in the impedance analysis above.
- Cursor 2 is near a zero at $f_n \approx 4$ KHz in the transfer function caused by R_c . That zero compensates for one of the double-poles (at 1KHz) for $f > f_n$. Consequently, attenuation for f >> 10 KHz is 1st order only.

Measurements: Measure your own version of Fig. 3.1 for your individual *DCDCbuck* board. Save your *Bode100* measurement file as *OL1_DCDCbuck_RLC.bode3* and convert it to *OL1_DCDCbuck_RLC.csv*. You should be able to display it with the author's *Matlab* program *Characterize_LoopGains_DCDCbuck.m*.

Override the given noisy file with this name and view your measurement with Matlab.

Using the *LoopGain* board in this practical guide, the connection from *Bode100's OUT*, labeled with "*Do not remove this cable*", must be exceptionally removed from *CH1*, so that this end of that *BNC* cable is hanging in the air.

0...3.3

3.2 Measurement of $ADC \rightarrow RLC Lowpass \rightarrow DAC$

sw(0)*i

Process

CH2

Bode 100 CH1 ₼

Uoff

OUT

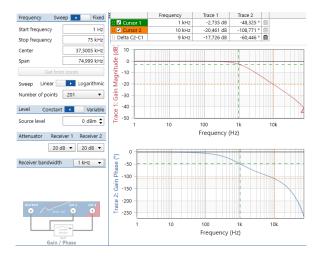
0...3.3V

0/1

PWN

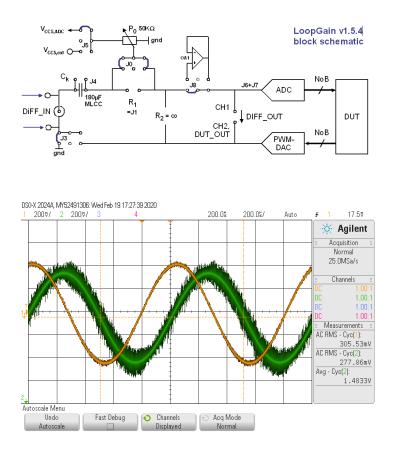
DAC

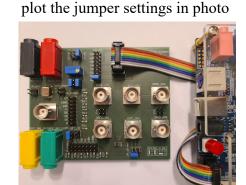
 $\Delta_4 = 1$


ADC

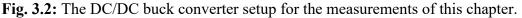
α₁

sw(1)=LEN


(a) Circuit to assemble (mux2-inputs v, w, iL, iout correspond to c, v, e, w, resp., of DCDCbuck R5 board.)


(b) Bode diagramm measured with Bode 100

(c) LoopGain board block diagram


0...3300 m\

(d) Photo of *LoopGain* board

(e) Oscillogram at $f = f_0 = 1$ KHz. Yellow: *CH1*, input at node *a*, Green: CH2, output at node y.

Measure the loop gain without compensator unit.

Use jumper settings for the DCDCbuck board as proven in document Getting Started with DCDCbuck Board. In this subsection, we will open the feedback loop by feeding the BNC output of the DCDCbuck board (Fig. part (a): label y) to the LoopGain board and use the 10-

.

wire ribbon cable to forward the signal to the ADC (Fig. part (a): label *a*), as illustrated in Fig. part (e). We will feed a voltage to the input of the ADC (label *a*) and observe its impact at output *y*, whereas in this case y=p as load current $I_{out} = 0$ and consequently q=0. Output *v* of the *ADC* is directly fed to the *PWM DAC*, achieved by setting sw(5:4) = "01". The 7-seg display will show the output of the ADC. Use *Quartus* > *Programmer* to program the *FPGA* with any given *ci de1soc*...*Rev10* *.*sof* files, e.g. *ci de1soc DCDCbuck Rev10 KP*=1,*Ki*=*Kd*=0.*sof*.

Electrical Connections:

- Connect the *DCDCbuck* board to *DE1-SoC* board with *JP2*, the outer 40-pin plug.
- Set jumpers as illustrated in Fig. 3.2 (d), compare them with Fig. part (c).
- Connect the *LoopGain* board with 10-wire ribbon cable to the ADC input plug of the *DE1*-SoC board to get the *ADC's Vcc*=5V, *gnd* = 0V and connect to the ADC's input channel *A0*.
- Connect *LoopGain* board's plug labeled *DUT_Uout* to the output of your *DCDCbuck* board.
- Connect LoopGain board's plugs labeled "Osci CH1, CH2" to your osci. CH1, CH2, resp.
- Connect LoopGain board's plugs labeled "Bode CH1, CH2" to Bode100's CH1, CH2, resp.
- Connect *LoopGain* board's plug labeled "*DIFF_IN*" to *Bode100*'s *BNC* plug *OUTPUT*.
- Leave *LoopGain* board's *BNC* plug *DIFF OUT* unconnected.

The DC value of *y* should closely follow *ADC* input *a*.

Set switches

Set sw(9:0)="xxxx **01** 00 1 0":

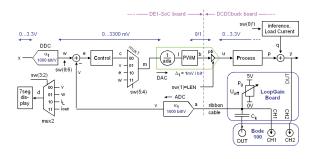
- *sw*(0)='0': no load current (We will use external current loads)
- *sw*(1)='1': synchronous, '0': asynchronous operation
- sw(3:2) = "00": show ADC output v on the 7-segment display in mV.
- sw(5:4) = "01": feed the ADC's output (v in Fig. 3.2) to the DAC.
- sw(9:6) sets w, the desired output voltage, which is irrelevant when sw(5:4) = "01".

Measurements: Turn poti P_0 on LoopGain board to add an offset to the AC output of *Bode100*, blocked by C_k . Observe the impact of poti P_0 on the 7-seg. display and turn it to ca. 1350mV

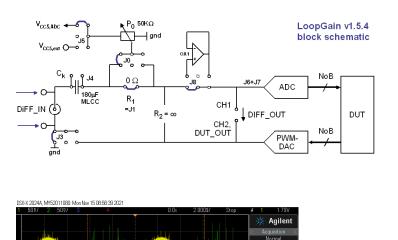
DC average voltage at point y of Fig. 3.2, from Oscilloscope: $U_{out}(y) =$	1349 mV
	•••••
DC offset voltage at point <i>a</i> of Fig. 3.2, 'U' from 7-seg display: $U_{off}(a) =$	1350 mV

Use Bode 100 to measure a Bode diagram, frequency range 10 Hz ... 75 KHz

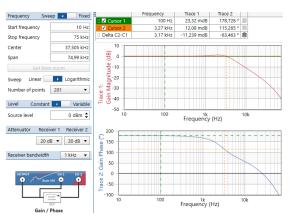
Bode100 output level: 0 dB, which corresponds to a peak-to-peak output voltage of **1.26v**

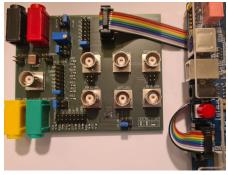

Important: (A) Verify with an oscilloscope that measured curves are sinusoidal all time during recording with Bode100. Take your own *Bode* diagram with *Bode100* as shown in Fig. 3.2(b). (B) Set receiver 1 and 2 attenuations such, that their control bars are large but never red.

Save your *Bode100* measurement file as *OL2_DCDCbuck_ADC_RLC_DAC.bode3*. and convert it to *OL2_DCDCbuck_ADC_RLC_DAC.csv*. You should be able to display it with the author's *Matlab* program *plot_Bode100_data_from_csv.m*.


M. Schubert

3.3 Include Compensator as Short Circuit $CTF(s) = K_p = 1$


(a) Circuit to assemble (mux2-inputs v, w, iL, iout correspond to c, v, e, w, resp., for DCDCbuck R5 board.)


(c) LoopGain board block diagram

(b) Bode diagramm measured with *Bode 100*

(d) Photo of *LoopGain* board plot the jumper settings in photo

(e) Oscillogram at f = 100 Hz.
Yellow: CH1, input at node a,
Green: CH2, output at node y.
Change observed: inversion.

Fig. 3.3: The DC/DC buck converter setup and measurements for the rest of this chapter.

lvg - Cyc

Measure the loop gain with complete but open loop.

Feed a voltage to the input of the ADC (labeled *a*) and observe its impact at output *y*, whereas y=p as load current $I_{out} = 0$ and consequently q=0. Output *v* of the ADC is the feedback path of the control loop, which is achieved by setting sw(5:4) = "00".

Use the same electrical connections as in section 4.3, except jumper settings

- Set jumpers according to Fig. part (c), plot your settings in Fig. part(d)
- Connect the *LoopGain* board with 10-wire ribbon cable to the ADC input plug of the *DE1*-*SoC* board to get the *ADC's Vcc*=5V, gnd = 0V and connect to the ADC's input channel *A0*.
- Connect *LoopGain* board's *DUT_OUT* to the output of your *DCDCbuck* board.
- Connect *LoopGain* board's plugs labeled "Osci CH1, CH2" to your osci. CH1, CH2, resp.
- Connect LoopGain board's plugs labeled "Bode CH1, CH2" to Bode100's CH1, CH2, resp.
- Connect *LoopGain* board's plug labeled "*DIFF_IN*" to *Bode100*'s *BNC* plug *OUTPUT*.
- Leave *LoopGain* board's *BNC* plug *DIFF_OUT* unconnected.

Set switches sw(9:0)

We will now include the controller into the loop by setting sw(5:4)="00".

Set switches

Set sw(9:0)="1100 **00** 00 1 0" sw(0)='0': no load current (We will use external current loads) sw(1)='1': synchronous operation sw(3:2) = "00" : show *ADC* output *v* on the 7-segment display in mV. sw(5:4) = "00" : feed the controller output (*c* in Fig. 3.2) to the *DAC*. sw(9:6) ="1100" selects *w*, here 2750 mV. We will get y = w - v in mV.

Programming the compensator

Program the FPGA with a controller corresponding to a short: CTF(s) = 1. (Use *Quartus* to program the *FPGA* with *ci_delsoc_DCDCbuck_Rev10_KP=1,Ki=Kd=0.sof.*)

Measurements

Turn poti P_0 such, that DC average output voltage of the *DCDCbuck* is $y = U_{in}/2 = 1.35$ V. Observe the corresponding *ADC* input voltage at node *a* on the 7-segment.

DC average voltage at point y of Fig. 3.3(a), from Oscilloscope: $U_{out}(y) =$ **1350 mV**

DC offset voltage at point a of Fig. 3.3(a), 'U' from 7-seg display: $U_{off}(a) =$ **1356 mV**

Use Bode 100 to measure a Bode diagram, frequency range 10 Hz \dots 75 KHz

Set Bode100 output level to 0 dB, corresponding to peak-to-peak output voltage of **1.26V**

Verify with an oscilloscope that curves are sinusoidal. Take a *Bode* diagram with *Bode100* as shown in Fig. 3.3(b). This Bode diagram should be very similar to that in Fig. 3.2, except...

180° phase shift \Leftrightarrow inversion of the AC signal

Save your *Bode100* measurement file as *OL3_DCDCbuck_Kp=1,Ki=Kd=0.bode3*. and convert it to *OL3_DCDCbuck_Kp=1,Ki=Kd=0.csv*. You should be able to display it with the author's *Matlab* program *plot_Bode100_data_from_csv.m*.

3.4 Compensator is a Constant Amplifier $CTF(s) = K_p = 10$

Use the same settings as in section 3.3, with exception of a compensator amplification of $CTF(s) = K_p = 10$ programmed within the FPGA. (Use Quartus to program the FPGA with ci delsoc DCDCbuck Rev10 KP=10,Ki=Kd=0.sof.) As the AC input voltage a point a is now amplified by 20 dB, the *Bode100* output signal must be attenuated by the same amount.

(a) Oscillogram at f = 100 Hz. curves must be sinuoidal! Yellow: CH1, input at node a,

(b) Bode diagramm measured with Bode 100

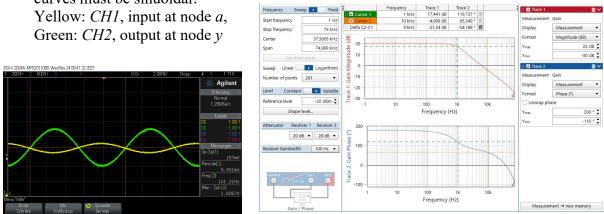
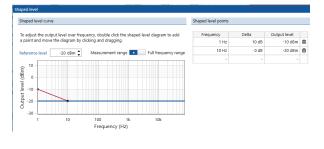


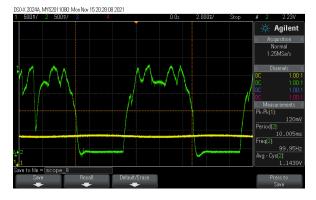
Fig. 3.4: The DC/DC buck converter measurements of this chapter.

Measurements

Turn poti P_0 such, that DC average output voltage of the DCDCbuck is $v = U_{in}/2 = 1.35$ V. Observe the corresponding ADC input voltage at node a as v on the 7-segment. Take care, that both curves on the oscilloscope are sinusoidal.


DC average voltage at point y of Fig. 3.3(a), from Oscilloscope: $U_{out}(y) =$ 1352 mV DC offset voltage at point a of Fig. 3.3(a), 'U' from 7-seg display: $U_{off}(a) =$ 1286 mV Use Bode 100 to measure a Bode diagram, frequency range 10 Hz ... 75 KHz

Bode100 output level -20 dB, corresponding to peak-to-peak output voltage of 126mV


Save your Bode100 measurement file as OL4 DCDCbuck Kp=10,Ki=Kd=0.bode3. and convert it to OL4 DCDCbuck Kp=10, Ki=Kd=0.csv. You should be able to display it with the author's Matlab program plot Bode100 data from csv.m.

3.5 Compensator is a Constant Amplifier $CTF(s) = K_p = 100$

(a) Oscillogram at f = 100 Hz. curves must be sinuoidal! Yellow: *CH1*, input at node a, Green: *CH2*, output at node y

(b) Oscillogram at f = 100 Hz, Bode100 source level -30dB, without attenuator, curves must be sinuoidal ! ye: CH1 @ node a, green CH2 @ node y.

- Fixed Frequency Sweed • Start frequency 1 Hz 18,411 dB -18,461 dB 69,616 ° 🕅 -57,763 ° 🛍 10 kHz 9 kHz 75 kHz Stop frequency 37,5005 kHz Center Span 74,999 kHz 40 30 Linear 📃 💽 Logarithmi 20 Number of points 201 • 10 Level Constant Variable Reference level -20 dBm 💲 Frequency (Hz) Shape level.. ator Receiver 1 Receiver 2 10 dB 💌 30 dB 💌 idwidth 100 Hz 🔻 Frequency (Hz)
- (c) Oscillogram at f = 100 Hz, Bode100
 source level -36...-40dB (using a BNC attenuator). Yellow: CH1 @ node a, green: CH2 @ node y.

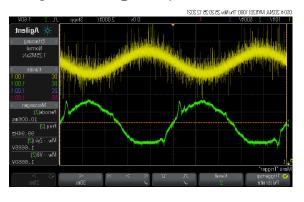


Fig. 3.5: Measurements at DCDCbuck board with $CTF(s) = K_p = 100$.

Measurements

Use *Quartus*, program the *FPGA* with *ci_delsoc_DCDCbuck_Rev10_KP=100,Ki=Kd=0.sof*. Turn poti *P*₀ such, that DC average output voltage of the *DCDCbuck* is $y = U_{in}/2 = 1.35$ V. Observe the corresponding *ADC* input voltage at node *a* on the 7-segment.

DC average voltage at point y of Fig. 3.3(a), from Oscilloscope: $U_{out}(y) =$ 1366 mV DC offset voltage at point a of Fig. 3.3(a), 'U' from 7-seg display: $U_{off}(a) =$ 1339 mV

Use Bode 100 to measure a Bode diagram, frequency range 10 Hz ... 75 KHz. Use a 20 dB attenuator to get the curve into the near sinusoidal shape as shown in Fig. 3.5(b). Verify it at a constant frequency of 100 Hz.

(b) Bode diagramm measured with *Bode100*

Save your *Bode100* measurement file as *OL5_DCDCbuck_Kp=100,Ki=Kd=0.bode3*. and convert it to *OL5_DCDCbuck_Kp=100,Ki=Kd=0.csv*. You should be able to display it with the author's *Matlab* program *plot_Bode100_data_from_csv.m*.

3.6 Compensator Contains an Integrator: $CTF(s)=K_p=1, f_i=1$ KHz

(Use *Quartus* to program *FPGA* with *ci_delsoc_DCDCbuck_Rev10_KP=1,fi=1e3,Kd=0.sof.*)

Measurements

Turn poti P_0 such, that DC average output voltage of the *DCDCbuck* is $y = U_{in}/2 = 1.35$ V. Observe the corresponding *ADC* input voltage at node *a* on the 7-segment.

DC average voltage at point y of Fig. 3.3(a), from Oscilloscope: $U_{out}(y) =$	xxxx
	• • • • • • • • • • • • • • • • • • • •
DC offset voltage at point <i>a</i> of Fig. 3.3(a), 'U' from 7-seg display: $U_{off}(a) =$	xxxx
	• • • • • • • • • • • • • •

Describe the problem of open loop measurements with high DC gain:

Due to the high DC gain of the integrator we cannot torn poti P0 such, that y comes close to 1.35V. It is either at its minimum level close to 0V or at its maximaum level of 2.75V (Higher levels are prohibited by software, as the charge pump of the LM27222 power-FET driver chip needs that U(SW) toggles up and down.