
MATTHIAS'WAGNER/''
ALBERT'MARTINEZ' WSN'|'PRACTICAL'TRAINING'2'

'

 1 

 

Wireless'Sensor'Networks'
PRACTICAL'TRAINING'2'

Introduction 

After learning the basic functions of both the msp430 microcontroller and the 
Code Composer Studio IDE in the first part of the practical training, we will now 
focus on the simplest form of wireless communication with 2 target boards. 

In part two of the practical training we will use the functions of the Data 
Link/Physical layer with its BSP and MRFI API. You will learn how to build a 
simple RF peer to peer network and get taught the function of basic RF 
standards like RSSI, CRC, CCA and LQI. At the end of this part you will have 
built a simple chat with all the groups. 

MRFI Data Link/Physical Layer 

1. In order to use the SimpliciTI Protocol and its lowest layer, we need 

some libraries provided by TI 

2. Import CCS project with SimpliciTI libraries  

• Click on File -> Import 

• Choose Code Composer Studio -> Existing CCS Eclipse Projects 

 

 

• Click on Browse next to Select archive file:  and browse to the 

WSN_day2.zip file 



MATTHIAS'WAGNER/''
ALBERT'MARTINEZ' WSN'|'PRACTICAL'TRAINING'2'

'

 2 

 

 

• Click on Finish to import the project to your workspace 
 

• Now you have a new project with all necessary libraries and drivers 
included 

 

3. As we will use 2 target boards, we also need 2 projects to write code for 
the microcontrollers. Therefore we will rename the first imported project 
and import it a second time. 

 
• Right click on the imported project and click on rename 

 
• Rename it to WSN_part2_receiver 

 
• Now repeat the step of importing the WSN_day2.zip project 

 
• Rename it this time to WSN_part2_transmitter 

 

4. Connect the FET debugger + the target board to the pc and again wait 

for the driver installation to finish 

 

The orientation of the debugger is very important, as the 6 
pin debugging connecter will fit 2 ways. Look carefully at 
picture and the arrows when connecting! 



MATTHIAS'WAGNER/''
ALBERT'MARTINEZ' WSN'|'PRACTICAL'TRAINING'2'

'

 3 

 

5. Figure out what the code is doing and try to understand the functions of 

the different code elements. 

 

• You can use the UART interface with the standard printf() function for 
debugging and reading back states of your program code. 

 

 

 

 

#include "mrfi.h" 
#include "serial/serial.h" 
#define msg_ON  0x01 
 
void main (void) 
{ WDTCTL = WDTPW+WDTHOLD;                   // Stop watchdog timer 
 P1OUT  = BIT0;    // P1.0 input+pullup 
    P1REN |= BIT0;    // P1.0 input+pullup 
    P1IE  |= BIT0;    // P1.0 interrupt enable 
    P1IES |= BIT0;    // P1.0 Hi/Lo edge 
    P1IFG &= ~BIT0;    // P1.0 IFG Flag cleared 
 
 BSP_Init(); 
 MRFI_Init();    // Init SPI com with CC2500 
 MRFI_WakeUp();    // wake up the radio 
 MRFI_RxOn();     // turn into Rx mode 
 
 initSerial();    // init Serial interface 
 printf("\r\n\r\n!!!      app start      !!!\r\n\r\n"); 
 
 __bis_SR_register(LPM0_bits + GIE);    // Enter LPM0, interrupts enabled 
} 
 
void MRFI_RxCompleteISR_new() // in Components/mrfi/radios/family5/mrfi_radio.c 
{ printf("RX ISR\r\n"); 
 mrfiPacket_t packetreceived; 
 MRFI_Receive(&packetreceived); 
 
 if (packetreceived.frame[5]==msg_ON) 
  printf("received msg_ON\r\n"); 
} 
 
#pragma vector=PORT1_VECTOR 
__interrupt void Port_1(void) 
{ P1IFG &= ~BIT0;    // P1.0 IFG Flag cleared 
 mrfiPacket_t packet; 
 packet.frame[0]=0x14; 
 packet.frame[5]=msg_ON; 
 while(MRFI_TX_RESULT_SUCCESS!=MRFI_Transmit(&packet, MRFI_TX_TYPE_FORCED)); 
 printf("send msg_ON"); 
} 
 
 



MATTHIAS'WAGNER/''
ALBERT'MARTINEZ' WSN'|'PRACTICAL'TRAINING'2'

'

 4 

 

6. Load the code onto 2 target boards. 

• This time we use one target board with a battery holder.  

!Always disconnect the battery while programming! 

• Program the second target board and open the Terminal in CCS 

• Use the first target board to send a message to the second. You 

should see the received message in the Terminal.  

 
 

• As every group will use the same RF Modules, you will not only 

receive messages from your sender, but also from the other 

groups. 

 

7. Change the code so that you will only get a received ON message when 

your sender transmitted a packet. (you only need to change one #define) 

 

 

 



MATTHIAS'WAGNER/''
ALBERT'MARTINEZ' WSN'|'PRACTICAL'TRAINING'2'

'

 5 

 

Cyclic Redundancy Check (CRC) 

1. Refer to Cyclic Redundancy Check (CRC) in WSN_Theory.pdf  

2. Now you will use the following code to prove the importance of CRC 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#include "mrfi.h" 
#include "serial/serial.h" 
#define msg_ON  0x01 
 // RF Power, CRC off 
void main (void) 
{ WDTCTL = WDTPW+WDTHOLD;  // Stop watchdog timer 
 P1OUT  = BIT0;    // P1.0 input+pullup 
    P1REN |= BIT0;    // P1.0 input+pullup 
    P1IE  |= BIT0;    // P1.0 interrupt enable 
    P1IES |= BIT0;    // P1.0 Hi/Lo edge 
    P1IFG &= ~BIT0;    // P1.0 IFG Flag cleared 
 
 
 BSP_Init(); 
 MRFI_Init();    // Init SPI com with CC2500 
 
    MRFI_SetRFPwr(0);   // RF transmitting power (0 to 2) 
    mrfiRadioInterfaceWriteReg(PKTCTRL0,0x05); //  CRC on (0x05) 
 
 MRFI_WakeUp();    // wake up the radio 
 MRFI_RxOn();     // turn into Rx mode 
 
 initSerial();    // init Serial interface 
 printf("\r\n\r\n!!!      app start      !!!\r\n\r\n"); 
 
 __bis_SR_register(LPM0_bits + GIE);    // Enter LPM0, interrupts enabled 
} 
 
void MRFI_RxCompleteISR_new() // in Components/mrfi/radios/family5/mrfi_radio.c 
{ printf("RX ISR\r\n"); 
 mrfiPacket_t packetreceived; 
 MRFI_Receive(&packetreceived); 
 
 if (packetreceived.frame[5]==msg_ON){ 
  printf("received msg_ON \r\n"); 
  int i=0; 
  for(i=0; i<12; i++) 
   printf("%c",packetreceived.frame[9+i]); 
  printf("\r\n"); 
 } 
} 
 
#pragma vector=PORT1_VECTOR 
__interrupt void Port_1(void) 
{ P1IFG &= ~BIT0;    // P1.0 IFG Flag cleared 
 mrfiPacket_t packet; 
 packet.frame[5] = msg_ON; 
 int i=0; 
 for(i=0; i<12; i++) 
  packet.frame[9 + i] = 'a' + i; 
 packet.frame[0]= 0x14; 
 
 while(MRFI_TX_RESULT_SUCCESS!=MRFI_Transmit(&packet, MRFI_TX_TYPE_FORCED)); 
 printf("send msg_ON\r\n"); 
} 



MATTHIAS'WAGNER/''
ALBERT'MARTINEZ' WSN'|'PRACTICAL'TRAINING'2'

'

 6 

 

3. Flash the code on both target boards and open 2 terminals to log the 

communication of the target boards. 

4. To deactivate the CRC of the target boards you have to change the 

Register PKTCTRL0. (slau259e.pdf page 715 and WSN_Theory.pdf) 

with the mrfiRadioInterfaceWriteReg(uint8_t addr, uint8_t, value). 

5. Flash the target boards again and try to interfere the transmitter by 

putting your fingers on the antenna of the board while pressing the 

button.  

 

Received Signal Strength Indicator (RSSI)  

1. Refer to Received Signal Strength Indicator (RSSI) in WSN_Theory.pdf  

2. Load the next code onto the receiver target board. The code measures 

the noise levels in dBm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#include "mrfi.h" 
#include "serial/serial.h" 
#define msg_ON  0x01 
 
void main (void){ 
 WDTCTL = WDTPW+WDTHOLD;  // Stop watchdog timer 
  P1OUT  = BIT0;    // P1.0 input+pullup 
     P1REN |= BIT0;    // P1.0 input+pullup 
     P1IE  |= BIT0;    // P1.0 interrupt enable 
     P1IES |= BIT0;    // P1.0 Hi/Lo edge 
     P1IFG &= ~BIT0;    // P1.0 IFG Flag cleared 
 
  BSP_Init(); 
  MRFI_Init();    // Init SPI com with CC2500 
  MRFI_WakeUp();    // wake up the radio 
  MRFI_RxOn();     // turn into Rx mode 
 
  initSerial();    // init Serial interface 
  printf("\r\n\r\n!!!      app start      !!!\r\n\r\n"); 
 
  __bis_SR_register(LPM0_bits + GIE);    // Enter LPM0, interrupts 
enabled 
} 
 
void MRFI_RxCompleteISR_new() // in 
Components/mrfi/radios/family5/mrfi_radio.c 
{} 
 
void read_rssi(int8_t channel){ 
 MRFI_RxIdle(); 
 mrfiRadioInterfaceWriteReg(CHANNR,channel); // set channel number 
 MRFI_RxOn(); 
 printf("%i\r\n", MRFI_Rssi()); 
} 



MATTHIAS'WAGNER/''
ALBERT'MARTINEZ' WSN'|'PRACTICAL'TRAINING'2'

'

 7 

 

3. Add a ISR to the program which will cycle 200 channels and measure the 

RSSI value. The ISR should be triggered from any character received by 

the UART interface.  

(look at your UART ISR code from Practical training 1)  

4. Start the program SimpliciTI RSSI Measurements.exe and connect to the 

port of the receiver target board. Start a measurement to see the 

noisefloor.  

 

 
 

5. With the same code repeat it several times and compare the data. Why 

are they different?  

6. Now you have to prepare your second target board to be a transmitter. 

Set the channel to your group number multiplied by 10 and transmit a 

data packet continuously in a while loop. 

7. Start SimpliciTI RSSI Measurement.exe again and repeat the 

measurement.  

8. You can now change the transmission power and repeat the 

measurement 

 

 

 

 



MATTHIAS'WAGNER/''
ALBERT'MARTINEZ' WSN'|'PRACTICAL'TRAINING'2'

'

 8 

 

Link quality indicator (LQI) 

1. Refer to Link quality indicator (LQI) into WSN_Theory.pdf  

2. Based on the last tasks you should now be able to write your own 

program for a Link Quality measurement.  

 

Use the following instructions and code parts to build a program: 

 

Transmitter: 

• Send 100 packets when the button on the transmitter is pressed 

• Send a STOP packet 20 times (define a packet that will be 

identified by the receiver as the last packet e.g. 0xFF) 

Receiver: 

• Use the RSSI_calculate(uint8_t rawValue) function to get the RSSI 

value of the last received packet in dbm (The raw RSSI value is 

located at packet.rxMetrics[0]) 

• Sum up the RSSI values till the STOP packet and divide them by 

the number of received packets 

• Print the result of the communication to the Terminal (the result of 

the division and the number of received packets) 

 

 

 

 

 

int8_t RSSI_calculate(uint8_t rawValue) 
{ int16_t rssi; 
 if(rawValue >= 128) 
  rssi = (int16_t)(rawValue - 256)/2 - 74; 
 else 
  rssi = (rawValue/2) - 74; 
 
 if(rssi < -128) 
  rssi = -128; 
 return rssi; 
} 



MATTHIAS'WAGNER/''
ALBERT'MARTINEZ' WSN'|'PRACTICAL'TRAINING'2'

'

 9 

 

Simple Chat  

1. Realize a wireless chat between all of the groups.  

•  Use an ISR of the UART and write every character received into 

packet.frame[i] and the number of received chars into 

packet.frame[0]. You should also use printf() or the UCA0TXBUF 

to send the command back to your own Terminal, so that you can 

see what you are typing 

•  If the received character is 0x0D (carriage return) (Enter Key) you 

can send the packet with the MRFI_Transmit() function 

• As the first characters of every message, you should send your 

own ID (like “1: “ for group one) 

• For receiving the message you must use the 

MRFI_RxCompleteISR_new( ) function. Use 

printf(“%c”,packet.frame[i]) in a for loop. After every message use 

printf(“\r\n”) to start a new line 

 

 

 

Now you can communicate with all other groups in a chat 

 

 


