M. Schubert A/D and D/A Conversion OTH Regensburg

S Signals, Noise and Signal-to-Noise Ratio

5.1 Static Signal Conversion

A signal with a bitwidth of NoB (number of bits) can represent NoL=2"?2 levels. Consequently
we can say that the representation of L-/ deltas (A) requires a number of

NoB =ceil( ld(NoL) ) = ceil( logs(NoL)/logs(2) ) = ceil( In(NoL)/In(2) )

bits, where function ceil(x) computes the next higher integer value and /d stands for logarithmus
dualis, which is hardly on any computer but can be easily computed as

ld(x) = logs(x)/logs(2) = In(x)/In(2) .

with any positive base B. The accuracy of the measurement should be a half A (= least
significant bit, LSB). Consequently, the integral non-linearity (/NL) should be

INL <1/2NB™ & INLo; < 100% / 2Vo5
Example:
A DC voltmeter has a range of R=0...200 A. How many bits do we need for the ADC, what

INL in % do we require for INL < '2A?

200 A => NoL = 201 % Number of Levels:
NOB = ceil (1d(NoL)) = ceil(1ln(201)/1n(2) = ceil(7.6) = 8

INL: < 100% / 281 = 0.2%
Exercise:

A DC voltmeter has a range of R=0...2000 A. How many bits do we need for the ADC, what
INLv, do we require for INL <'2A?

Solution:

A DC voltmeter has a range of R=0...2000 A. How many bits do we need, what INL do we need when it should be <2A?
L=2001, NOB = ceil(ld(L)) bits = ceil(ln(2001)/1n(2)) bits = ceil(10.967) bits = 11 bits.
INL < 100% / 2! = 0.024%
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5.2 Fundamentals on Handling Dynamic Signals
5.2.1 Signal Power and Effective / rms Amplitude

A signal is a physical representation of an information. It may come as voltage, current, power,
temperature, displacement, as flag on an airport, as digital bit, etc. Except from some DC signals
like temperature we typically handle waveforms like sound.

We distinguish between amplitude, power and effective amplitude, also termed root-mean-
square (rms) value of a signal. Signal power is expressed as square of signal amplitude.
Physically correct power is U?’/R and I’R when U, I, and R represent voltage, current and
resistor, respectively. But how to deal with other signals types like gas pressure, flags or digital
signals? In signal processing the power of a signal is simply its squared amplitude. Average
power is defined according to table 5.2.1.

Tab. 5.2.1: A signal's average value and average power

Average or DC Average signal power  Effective or rms amplitude
amplitude X x2 Xrms
. _ 1 0o+T o 1 ty+T — to+T
time x =x=— | x(t)-dt X2 =— [ x%()-dt 2 1 2
continuous: r rJu. T J ) Yomg TN = T I X (0)-dt
0 N
— 1 & J— 1 N — N
. . ) e 7 ) 1
time discrete: Yoy SX= ;xz X" = Nin X, = \x? = _z X2
= N3
Multimeters: RMS value of the alternating part only: x =Ji -3

The average value of a signal is termed its DC value, statistically represented as x . With “signal

power” we typically address the average power x° of a signal power x°(¢). The effective or
rms amplitude of a signal is the square root of its average power.

Fig. 5.2.1: The effective or rms
value Uyms of a voltage U(t) is the
DC voltage, that causes the same
heating of R>=R; as U(?).

Warning: The frequently seen notation x_ is not the average signal power but the square of its
DC-value. Example: x(f)=4-sin(w?) has a DC value of x =0 and consequently X = 0, while

its average power is x° = 4> /2.
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5.2.2 Effective Values of Some Particular Waveforms

4 Urect (a)

A-r—y—— T
0 [

Fig. 5.2.2-1 : Particular waveforms: (a) rectangular, (b) sinusoidal, (c) triangular.

Fig. 5.2.2-1 shows (a) a rectangular, (b) a sinusoidal and (c) a triangular signal oscillating
between the values 4=R/2 and —4=-R/2 with range R=2A. Its total power for voltages at 1Q
and its effective voltages are given by

- A R A R
Rectangular: u:l === o oy == 5.
g rect 1 4 rect eff \/i 2 ( )
- 2 2
Sinusoidal: ul = AR Ugp o = A _R , (5.)
28 ENCRN
. — A R A R
Triangular: UL == e ou, === 5.
g T3 12 eff \/5 2 (5.)
Different frequencies are uncorrelated, they add in power.
u(t) A
Fig. 5.2.2-2: Ad oo

Area comparison of the three waveforms

Exercises

Exercise 1: Given is a rectangular waveform:
urec(t) =A while 0 < t-nT < Tu and urec(t) = -A while Tu < t-nT < Tu+TL, n=0, 1, 2, 3, ...

Compute signal power: Wrect(t) = & . v v vttt e ettt e et e et e
Average signal POWET: Ulms =. « « v v vttt e

Effective amplitude: urms = . . . . . o oo e e e
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Exercise 2: Given is a sinusoidal waveform: (Hint: sin’(x)= Y2(1-cos(2x) )
usin(t) =A-sin(wt)

Compute Signal POWETr: UZsin(t) = & o v v v vt e e e e e e e e e e e e e e e e e e e
Average Signal POWET: UZGnms = « « o v v v e v e e e et e e e et e e et e

Effective amplitude: Usingms = -« v o o v oot ittt e e e e e e e e e e

Exercise 3: Given is a triangular waveform:
uri(t)=(A/T)-t for 0<tn'T<T, n=0,1,2,3,...

Compute signal power: U2i(t-nT) = . . . ..ttt e

AVErage Signal POWET: Ui ms = « v v v e e oo e e e et e e et e e e

Effective amplitude: Utirms = . - ¢ o o it it it e e e e e e e e e

What is the difference to power and rms-amplitude of us(t) if some triangles are positive and
the others negative?

Solutions:

Exercise 1: Given is a rectangular waveform:

Ured(t) =A while 0 < t-n"T < Ty and () = -A while Ty <t-n'T < Tyt T, n=0, 1, 2, 3, ...
Compute signal power: U2 q(t) = A?

Average signal power: 1%, = A2

Effective amplitude: Uy, =A

Exercise 2: Given is a sinusoidal waveform:

uin(t) =A-sin(ot)

Compute signal power: u%,(t) =A% -sin? (ot) = % A?-(l-cos (2wt))
Average signal power: W, ms=* A? as average over cos (x)=0.
Effective amplitude: ugnms =A/sqrt (2)

Exercise 3: Given is a triangular waveform:

uy(t) = (A/T)t for 0<tn'T<T, n=0,1,2,3,...

Compute signal power: u?(t-nT) = (A/T)2- £2 -

Average signal power: Wyims = (1/T) [ (A/T)2- £3/3]," = (A/T)2-T3/3T = A?/3

Effective amplitude: Uyims =A/sqrt (3)

What is the difference to power and rms-amplitude of u,(t) if some triangles are positive and the others negative? no difference

. 2
Exercised4: U, . .

T 2 [ 2
- uoﬁ&Et +u - u - uoﬁ’set +u

osc total ,rms osc,rms
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5.2.3 Summation of Correlated and Uncorrelated Signals

e Correlated signals depend on each other
e Uncorrelated signals do not depend on each other

Correlated signals sum in amplitude: Voumeorr =X X, X5+ Xy 5.)
Uncorrelated signals sum in power: Y sumameorr = \/ XX X Xy 5.)
Different frequencies are always uncorrelated. (5.)

Exercise:
We have N identical microphones recording sound. The recorded sound waves are added
optimally for amplification What is the improvement in SNR compared to a single microphone?

Fig. 5.x:

M microphones
receiving the same
sound signal.

Solution to the exercise:
Sound waves are correlated an sum in amplitude: Ug qum = N-Ug => P = N?-US2.

The microphones noise in uncorrelated an sums in power: P, qum = N U.2.

SNR improves according to SNRgu=(N? -Us?)/ (N U,2)=N U2/ U,2.
Consequently, the SNR improves by a factor N. This corresponds to factor sqrt(N) in voltages.

This is basically the first example of oversampling with oversampling ratio OSR=N.
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5.2.4 Bel and Decibel

In honor of Graham Bell a factor 10 in signal power is termed a Bel, and 1 B =10 dB, just as
1 m=10dmor 1 liter = 10 dl. As power corresponds to square of amplitude (p=u*/R=i>-R) and
log(x?)=2-log(x) we get

Signal-Ratio = log,, 22 B =10log,, 22 dB = 201log,, “2 dB = 20log,, 2 dB . (2.6)

P P U, L

where lg stands for logio.

Exercise 1: 10dB is what factor in signal power? 10dB is what factor in effective voltage?

Exercise 1:: 10dB is what factor in signal power? 10dB is what factor in effective voltage?
By definition 1 B = 10dB is a factor 10 in power - a factor sqrt(10)=3.162 in voltage.

Exercise 2: A factor 2 in amplitude corresponds to one bit. Compute it in dB!
20dB ‘1g(2) =~ 6.02 dB

Exercise 3: to what factor in amplitude and power do 3.01 dB correspond?
Amplitude: 107 (3.01dB/20dB)=sqrt(2), Power: 107 (3.01dB/10dB)= 2.
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5.2.5 Signal Accuracy and Effective Number of Bits (ENoB)

This chapter is to give an intuitive introduction in A/D and D/A converter design and selection
for engineers. We shall show that from theoretical considerations an NoB bit quantizer can
obtain a maximum theoretical signal-to-noise ratio or signal-to-(noise+distorition) ratio
(SINAD). While SNR is defined for any input waveform, SINAD assumes a maximum
amplitude sinusoidal input wave. In this case SNR=SINAD.

SignalPower

SINAD g = lg( )-IOdB < (1g(2N°B) + 1g(1.5)) 10dB = (NoB-6.02 + 1.76) dB

NoisePower

or the effective number of bits (using ENoB = NoB) as

SINAD,, —1.76dB
6.02dB

ENoB= for triangular e4(t), ENoB=(SNR4s+3.01dB)/6.02dB for rect. eq(t).

where /g stand for logio. As a rule of thumb for nowadays ADCs compute
SINAD g = (6 ENoB +2) dB

SINAD,, —2dB
6dB

ENoB =

Note that the 10 dB-/g(3/2)=1.76dB accounts for the different waveforms: While the reference signal is assumed
to be sinusoidal, the quantization noise is assumed to have a triangular shape.

Exercises:
What is the maximum S/NADuas theoretically obtainable with a 16 bit ADC?

Rule of thumb: SINADGE = . . it ittt et e e e e e e e e e e e e ettt ieeann

Accurate: SINADGE = & it ittt e e e e e e e e e e e e e e e e

In an advertisement a 16 bit ADC has a maximum S/NAD of 93.5dB. What is its effective
number of bits?

Rule of thumb: ENOB = . . . it e e e e e e e e e e e e e e e et e e e
Accurate: ENOB = . ittt it e e e e e e e e e e e e e e e

Take data sheets of different vendors (e.g. Analog Devices, Burr Brown, Maxim, Linear
technology, Texas Instruments,...) and check bit-width versus SNR for different ADCs.

Solutions:

Rule of thumb: SINADg.. = 16 '6dB + 2dB = 98 dB

Accurate: SINADg; = 16°6.02 + 1.76)dB = 98.08dB

Rule of thumb: ENOB., = (93.5-2)dB /'6dB = 15.25 bits
Accurate: ENoB = (93.5-1.76)dB‘/ 6.02dB = 15.24 bits
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5.2.6 Integration of Odd and Even f(x) in Symmetric Boundaries

A function is called

even  when Sfeven(x) = feven(-x), €.g. cOS(X),
odd when Jodd(x) = -fodd(-x), €.g. sin(x).

For integration in symmetric boundaries holds the rule

[ o1t =2 £ (5
jifodd (x)-dx=0

Any function f(x) can be subdivided into an odd and an even part:
Soven(X) =Y (f(x) + f{-x)), e.g. cos(x) = (e + e7)/2
fodd(X) =Y (f{x) - f{-x)), e.g. sin(x) = (e/* - e7%)/2;.

Get back the original function by

fx) = feven(X) + fodd(x), e.g. %= cos(x) + j-sin(x) .

-5.8-
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5.3 Budgeting Noise Sources

In the following, we write E” as abbreviation of E_f = E; . with x standing for g, alias, clkj,
nonlin, T&H, others...

From the (ADC and DAC) customer point of view, we distinguish 2 kinds of noise sources:
“Internal” noise sources, that are specific to a particular device, and “external” noise sources of
the device, so that we have an influence on them through the design. If a noise source is internal
or not, depends on the particular conversion device. While quantization noise is always internal
and depends on the number of bits (NoB), Sample&Hold noises depends on the device.
Examples: AD’s LTC2308 ADC provides no internal sampler, while 77’s ADCI0 within
MSP430 does, but we can do settings to control that sampler

We will use Eingrms and Eexy,rms, abbreviated with Eir and E.x, respectively:

e FE;u: Build-in noise voltage coming unavoidable with a particular (ADC or DAC) device.
e FE... Noise voltage contributions that occur outside a considered (ADC or DAC) device.
e Total noise power: E,, = E. +E_,

tot nt

About the word “power”

e “Power” is physically measured in Watts, while we measure it here in squared amplitudes,
e.g. V2, A2, For SNR computations the results are the same.

e True power computation would have to respect the DC component of a signal. A sinusoidal
signal measured from 0...R would deliver an rms power of R*/8+R?/4, not R*/8.

Some typical noises sources are

E, quantization noise

Eoniin - noise due to built-in non-linearity

Egviten  noise from switching currents and/or voltages

Eair  clock feed-through: switching noise caused by digital clock signal

Ecuj noise due to clock jitter

Ewmermar  thermal Johnson noise (resistors have spectral noise power of 4k7-B)

Epink  1/fnoise

Egui.s  aliasing noise

Eren  noise due to track-&-hold process

0. Ecurrem mnoise caused by current flow, e.g. through doped semiconductors or grain
boundaries

11. Eotin other built-in noise sources.

12.  E,ex  other external noises sources like external resistors

i S B e

The total noise power is computed as sum of all noise contributions. Example:

) 2 2 2 2 2 _ [
Eint - Eq + Enonlin + Esw[tch + Ethermal + Epink + Eotin > E'int - Ent,/‘ms - Eint

2 2 2 2 2 2 2 _ _ [
Eaxt - Ealias + ET&H + Eclkj + Ecllgft + Ecurrent + Eotax H Eext - Eext,rms - Eext

2 _ 2 2 _ _ [ 2
Etot - Eint + Eext > Etot - Etot,rms - Eint + E&rt
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In the following, we will use a sinusoidal test signal with the maximum possible amplitude, so
that SNR (Signal-to-Noise Ratio) and SINAD (Signal to Noise & Distortion ratio) are the same.

Typically, we have a system accuracy goal given by the specifications:

SNRo = SinusoidalSignalPower U ;ms U Sz,,ms R*/8
tot = = = = R
TotalNoisePower E., E.+E., E. +E,

with R being the peak-to-peak voltage range. Power data in dB cannot be added, so we have to
compute absolute power data. There are several possibilities to translate SNR4s to SNR, which
is a power-ratio factor:

SNR 5 SNRp

SNR =10 1048 — 93018 — 92(ENoB+1.76)

With sinusoidal signal power R?/8, we calculate the available total noise power budget as

2o SignalPower _ R*/8
tot SNR i 101 °
SNR 10 10dB

With a vendor-given, device dependent SNRas,in: (or SINADag,int) We get

R*/8

2

B = 5w, |-
10 10dB

The remaining noise power budged "external" of our conversion device is

P g _R2 1 1 _R2 1 1
et — ot T Tt | T T - e SNR T SNRy,
8 SNR, . SNR . 8 dB ot 4B int
0 m 10 10dB 10 10dB
2 2
Etot Eext
Fig: 5.3
Total  noise-power E2 £2
budget E,, its share , T&H alias
from the inside the Eint =
conversion device, s 2
E, and the Eq+ Enonlin* - E2
.. . ink
remaining, device- EZ P
"external” noise- thermal
2
power budget, £, . Etex

If this noise-power budget is assumed to be equi-distributed over K noise sources, we get (for
example with xxx € {alias, clkj, T&H, otex})

-5.10 -
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2
fxx - & <:> EXX)C rms = E)ixx = EEXt7rmS .
2 | VK
Example:

Given is a 2.7V technology. Required total accuracy is SNRior.az = 80 dB. Given by the vendor
1S SNRas.int = 83 dB. What is the effective noise voltage budget Eex,-ms available for the customer
and what is the effective noise-voltage budget Ex«,ms for any of the 4 external noise sources?
(The noise budget is to be distributed over the 4 noise sources with same power.)

SNR 45 110dB B /10dB
SNRio = 10 ¥osn 1045 = gR0481005 _ 10

U, =R*18=(2.7V)8=0.911 V?

1 1 R*( 1 1 27V 1
ijt = U§ rms - :_(_8_ 8]: ( 7V) 3 = 455610_9V2
"™\ SNR,, SNR,, 8 \10® 2-10 8 2:10

Eext,rms = \/ngt = \/4556 10_9V2 = 675},LV d Exxx,rms = Eext,rms / 2= 3375“\/

In the following subsections we will compute the noise power of the different noises sources
mentioned above.

Exercise:
Given is a 3.3V technology. Required total accuracy is SNRw:a5=90dB. Given by the vendor is
SNRint,a5=95dB. What is the total effective noise-voltage budget Eex:rms available for the

customer and what is the effective noise-voltage budget Exxxrms for any of the 5 external noise
sources? (The noise budget is to be distributed over the 5 noise sources with same power.)

Eext, rms —

Exxx, rms =

Solution to the exercise above:
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SNRior = 10*"r 0% = 1020 /0% = 10° yg =R*/8=(3.3V)¥8=1361 V2,

) 1 1 B3V (1 1 .
Eext - U.Sz’,rms (SNR - SNR = 8 W_ 109.5 = 930810 10V2
tot int

Eestrms = | B2, =\6.806-107°7> = 30510V —  Excoms = Eexoms / A5 = 13.64pV

ext
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5.4 Computing Noise Power of the Different Noise Sources
5.4.1 Quantization Noise Power of DAC Output Waveforms
5.4.1.1 Best-Case SNR for Multi-Bit Quantization

(a)
Fig. 5.4.1.1:

(a) Multi-bit quantization
of a signal 4-sin(wt)
with amplitude A>A.

(b)

(b) Quantization error
eq(t) has a mostly
triangular shape.

Quantization noise is a quantity that mainly depends on the smallest possible step, termed A, of
an A/D or D/A converter, and it corresponds to numerical round-off noise.

For a sufficiently busy signal with signal range Rs >> A, quantization error e(?) has a triangular
shape over time axis with range R; = A, as shown in Fig. 5.4.1.1(b). Consequently,

2
E? _A & E A

Jtri Jtria,rm
q,tria 12 q.tria,rms \/E

For a NoB binary input bits DAC with NoB >10 we use the approximation

R _ R

- yNeB _| = o NoB

Quantizing s(¢) = (R/2)-sin(wt), the best obtainable SNR respecting quantization noise only is

2 2 2
SNR, = Szrms - Rz S 2 Rzzﬁi =22NOB§
" E .. A/12 RY/Q27-12) 2

SNR, ;5 =10dB-1g(SNR, ) = NoB-6.02dB +1.76dB

The factor 3/2 in SNR, corresponding to 1.76dB in SNR,,q4s stems from the fact that reference
signal s(£)=(R/2)-sin(t) is sinusoidal and the quantization noise e,4(¥) is triangular.
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5.4.1.2 Best-Case SNR for Single-Bit Quantization (NoB=1)

Pulse-width modulation (PWM) and AX
modulation are frequently used with single-
bit quantization. When the transferred signal
range R is small compared to A, i.e. R << A,
quantization noise can be assumed to be
rectangular as illustrated in Fig. 5.4.1.2-1.
Then effective power of quantization noise is

2 _ A_z o> 2 — é
q,rect 4 q.rect,rms 2
so that
2 2 2
SNRq rect = SZVV”S = R2 /8 = 2 R 2{\/83 = 22NOB l
v T A4 RV .4) 2
and

SNR, ,; =10dB-1g(SNR, ) = NoB-6.02dB —3.01dB

A .
averaged analog signal

off+A=% T M 7(t) r
IN
N\

2-level quantized signal u(t)

o
|
|
|

_ A
Off=" 2

Fig. 5.4.1.2-1: Signal range R << A
yields rectangular quantization noise

The factor 1/2 in SNRg,rec: corresponding to -3.01dB in SNRy rectas stems from the fact, that
reference signal s(#)=(R/2)-sin(¢) is sinusoidal and the quantization noise e,() is rectangular.

-5.14 -



M. Schubert

A/D and D/A Conversion

OTH Regensburg

When signal amplitude A is similar to rectangular single-bit quantization A :

Fig 5.4.1.2-2:
One-Bit quantizer.

(a) signal u(t)
obtained by
averaging d(t).

Quantization
noise obtained
as difference

eq(t)=d(1)-u(1).

(b)

(a)

A
u(t) d(t)
A 7 -
[~
A/Q-Zi___________ ——k1--F}-1-
0 1 ——>
o1 1 [ TR T T T T T T T T
[ [ T T T T N
o T |
® eqya bbb T
[ [ T T T T | T T T
A I I R Dt i O A e e A e R B RN N B |
[ [ TR T T T T T
[ [ T T |
A2 *I'“I“I'T“H',I"‘ 11Tt 1" “1
0 | I I >
=
S AR R
I (T T T I T
[ [ T T T T N
A F-FA-——t—--F4-——--—4—-——-t+—---F—t-1—+

To compute a PWM signal we observe one time interval 7=7x+T11, where T# is the total high-
time during and 7% the total low-time of the signal. We define urec(?) as

Oy +A
urect(t) ={

and

Oy

T

1
s = ?J.um,(t)dt =

0

Using

s
T

when 0<t-t <T,
when T, <t-t <T

(7 T,4T,
— j(oﬁ+A)-dz+ jx-dz
Ty T,

=1-D.

~ [

with offset oy and #=i'T,i=0,1, 2,3, ...

T,
=0, +-LA.
J /A T

we get signal s, which is the average of urect(2), as

s:0ﬂ+D-A

-5
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(a) (b)
A A
off+A:A -r - i i il e T Bl | A—-T—r-l——l—'l—r—l——l—‘l—r—l
I e N e T e
D=1/4 T T T 11 "1 11
off=0% — — —D> 0 : — —>
1 l 1 | 1 | 1 1 1 1 1 1 l 1 1 t
1" _|_’|””|’T’|’_|__|_T_|t - -1 T T - T T - 1 [
PN |‘|__|_|__|__|__|_|__| A/4___|_|__|__|__|_|__|__|__|_|__| T
TH TL T 2T 0 IDI 1 1I 1 1 I2I 1 1 1

Fig. 5.4.1.2-3: (a) Rectangular signal with average, (b) quantization noise = signal — average.

The quantization error is

A+o,)—s= (1-D)A when u
/A
s—0, = D-A when u,,(t)=0,

(H)=o0,+A

rect

eq,rect (t) = Upoey (t) —§5= {

The total quantization noise power is

2 IT AZ ] 2 s 2 2 2T ZT
E2.. =Fje;(t)-azt=7 [a-Dydt+ [D%dt :A((I—D) 2+D TLJ
0 0 Ty

= K((1- D)’ D+ D*(1- D))= AD(1- D)

E? =AD(-D)=A(0.25-s%) (Eq rect /A)? = D(1-D) = 0.25-s2

q,rect

E . =AJyD(1-D)=Ay0.25-5"

q.rect

with a maximum at D=0.5.

mcv

Fig. 5.4.1.2-4: Quantization noise power as
function of duty cycle D.

For AYX modulators the total High- and Low- times consist of several disjointed bits and the
integration interval 7' may not be so clearly to define. However, the result is the same.
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5.4.2 Quantization Noise Power of an ADC Samples
5.4.2.1 Multi-Bit Quantization with Sufficiently Busy Input Signal

Let’s assume we sample a piece of music that takes 200s with a sampling frequency fs=50KHz.
Then we have N=£5-200s=10" samples and the same number of quantization errors ei=ey(t;),
where ti=i-T=i/fs. Their quantization noise power is defined as

2 1 S 2
E'=—) e .

q N ; i
We now arrange the samples e; according to their size, e;, and form K groups of width 2=4/K
containing n; samples. The we can re-write the sum as

K
with weight function wy=n;/N and Z w; =1. For ~—0 this sum strives to
j=1

A2
qu = J.w(eq)'ej -de,

-A/2

As the total probability jw(eq)-deq =1. Assuming e; uniformly distributed within the

interval -A/2 ... A/2 the shape of w(ey) is given by

A w
/A when |e,|<A/2 1
w(eq = ) A
0 otherwise
and the integral evaluates to R
A A €qi
0 A2 2 _— 0 — q!l
1 A 2 2
EX=|we)-e -de,= | —-e -de =—
q J:D q q q AJ./Z A q q 12

Fig. 5.4.2.1: Probability w(eg) is uniformly
distributed over ey. I.e. any e, has the same
probability to occur within
interval -A/2 ... A/2.

In summary

ZZZ

A > A
=— & E =.E =—|.
q 12 q.,rms q }12

Note that this is exactly the same result as for the triangular, time-continuous output waveform
of the DAC. In fact, if we would order all the e; by size they would form a triangle.
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5.4.2.2 Single Bit (NoB=1) Toggles at Constant Input Signal

OTH Regensburg

This happens typically if only the least significant bit (LSB) oscillates. The signal is computed
by averaging the in put samples si=s(#;). We have a total number of N samples, with . of them
having the value s;=0 and n#z of them the value s;=A. Their average value (here assumed to be
more or less constant with respect to the sampling rate) is computed as averaging value:

1N
s(t)=— S. .
(t) NZ

Using

p="1 & 1-p="u
N N

delivers the average signal as

s@)=D-A.

Consequently, we have n. errors of size egi=si-s(t) =-DA and nm errors of size

eq;=sj-s(t) = (1-D)A. The total noise power is then

»_ 1%

Ej=—>e€, = %(DA)Z + %H((l ~D)A} = (1- D)(DAY + D((1- D)AY = D(1- D)A’

NS

The final result,

2
E! =D(-D)A* with its maximum of E. = A up=L
4 2

is essentially the same as we had for the 2-level DAC in the time-continuous regime. In fact,
we could reorder our ey, to form the sampling of a pulse-width modulated wave.

Fig. 5.4.2.2: (a)

(a) Samples si and
their average value

S(t).

(b) Quantization errors
computed from (b)

eq,i=Si-S(1).

(1D)A Fo oo
(c) Probability of T T T
quantization errors

Si

i (c)

‘_
D

w(t)

1-D
e

>

| "

0 >
eqi to occur. l l ll li -DA 0 (1-D)A €qii
DA J--d-4__ s
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5.4.3 Quantization Noise Power in the Frequency-Domain
5.4.3.1 Using Shape Functions to Model the Frequency Domain View.

We now know from time-domain considerations that the total quantization noise power of a
multi-bit quantization of a sufficiently busy signal s(z) with amplitude 4 >> A delivers the
quantization-noise power

AZ
BP=2
12

with A being the least significant bit. We can use eq(?) or eqi, i=1...N, to compute the Fourier
transformed of this functions. As the Fourier transformation must be done for a particular signal,
we construct a general approximation that we can transform. Respecting that different
frequencies are principally uncorrelated we have to add or integrate them in power:

A
EX(f)= [EX()-ds ﬁup%ﬁU)
=0

where the abbreviation qu stands for

AZ

2 2
Eq—Eq(f)‘f_m_lz.

Considering spectral quantization noise the range f=0...f/2, with fs being the sampling
frequency, we can write

E ()=E, - w(f)
with shape function w(f) having the property

Twirr =1

f

In the time-discrete domain we use a sampling frequency fs and the relative frequency F =~
N

. Consequently, dF/df = 1/fs yields df=fs dF and the shape integral translates to
f2 FZ

[w(f)-df = [w(F)-aF

i £

with Fi=fi/fs, Fo=f/fs and W(F)= fy-w(f/f,).
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5.4.3.2 Quantization Noise at Nyquist Sampling : Bandwidth fz = 7; fs.

Given is sampling frequency fs and consequently
Absolute bandwidth fz = f5/2 ,
Relative bandwidth  Fz = fp/fs =" .

If the signal s(?) is sufficiently busy with respect to fs and the quantization process as the same

probability to hit any value in the range —A/2...A/2, then the shape function for a quantization
error is “white”, 1.e.

Table 5.4.3.2: Shape functions with unit area at Nyquist sampling: /3 = % fs

Quantity over real frequency axis f over relative frequency axis F
. 2 1 f. 1 1
shape function = —— jf 0<f<Ls 2=— if 0<F<—
win=17. "7 T OS2 ey =2 Y 2
0 otherwise 0 otherwise
spectral ' '
qugntization E; (/)=E;-w(f) E;(F)=E, -W(F)
noise power

Integrating the total noise power in the baseband 0...fs or over 0...Fp obtains the total noise
power of the sampler. As this power cannot depend of the kind of integration the result over

frequency must be the same as obtained n time-domain, namely E qz .

LI © /3
fasiss B dr = [ B wdf = B} [2odr = B} fy =}

®© ) Fy
Faxis: [E} (F)-dF = [E}-W(F)-dF =EijidF :E;-;
0 —0 0" B

B

Fy=E, .
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5.4.3.3 Quantization Noise Reduction by Simple Oversampling

Sampling frequency fs is now increased to an oversampling ratio of

OSR = s L .
2f, 2F,
Consequently,
f 1
=_Js & F,=—
T5 = 5088 ¥ 20SR

with OSR > 1. Note that Nyquist sampling corresponds to OSR = 1. Consequently we have

Table 5.4.3.3: Shape functions with unit area at over-sampling: fz = 7 fs/OSR

over real frequency f over relative frequency F
2 1 . f 1 . 1
- jf 0L f<Is 2=— jf 0<F<—
w(f)=4f; OSR-f, 4 4 2 | W(F)= OSR-F, 4 2
0 otherwise 0 otherwise
E; (f)=E, -w(f) EX(F)=E!-W(F)

Integrating the total noise power in the baseband 0...fs or 0...F3 delivers the total noise power
in the baseband.

) © 1 2
: Eol 1 E
“axist | E;(f)-df = E, df =E; | ———df = E, =—1
faxis j S ()-df q_jwwm / qQOSR_fB = E sk 7 = Osk
0 . 0 Fy l l E2
Faaxis: [E} (F)-dF = E} [W(F)-dF = E} [ ———dF = E - Fy=—21
g J ) OSR- F, OSR-F, *  OSR

Consequently, by oversampling with ratio OSR
the noise power within the baseband is reduced with 1/OSR,
the noise amplitude within the baseband is reduced with 1/+/OSR .

This noise reduction assumes an ideal lowpass, i.e. |Hrr(f)|={1 when f<f5, 0 otherwise}. With a
non-ideal lowpass we obtain

TE;'(f)HjP(f)-df overf or TE;'(F)HjP(F)-dF over F.
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Fig. 5.4.3.3: A2 ¢4
White Quantization 6fg,
Noise (0™ Order Noise
Shaping)
A2
_ 12° OSR¢=1
(a) no oversampling
0 T T T T T T T — —
o f,2 2 3 4 5 6 7 8 9 B
4 lowpass
I
. 6f32
(b) Using an OSR=4 and A2
: A% OSRy=4
an ideal lowpass at i 12
fé- 0 Y 1 T T T T T — —
0 1 2 3 feu/2 5 6 7 8 9 s
A2 ‘:oﬂpfss A2 OSR3=9
(¢) Using an OSR=9 and 6'ss . L2 7 , , . > —
an ideal lowpass at 0 1 2 3 4 5 6 7 g fss/2 fa
/.
Exercises:

The noise power in your signal has to be reduced by simple oversampling an subsequent
filtering with an ideal lowpass with cut-off frequency fs. Compute the required oversampling
ratios:

Reduction of noise power in the baseband by a factor 10: increase OSRby . ...........
Reduction of noise amplitude by a factor 10: increase OSRby ... ... ..............
Improvement of SNR by one bit: increase OSRbyY . . . ... .. i ienenn..

Improvement of SNR by NoB bits: increase OSRby . . . .. ..ttt

Improvement of SNR by X dB: increase OSRby . . . .. ..ottt iiinenn.

Solutions:
Reduction of noise power in the baseband by a factor 10: increase OSR by factor 10
Reduction of noise amplitude by a factor 10: increase OSR by factor 10%=100

Improvement of SNR by one bit: increase OSRby 22 = 4 (1 bit is amplitude noise reduction by factor 2)
Improvement of SNR by NoB bits: increase OSR by 22%°® = 4B (NoB bits is 2%® amplitude noise reduction)
Improvement of SNR by X dB: increase OSR by 1st way: factor 10%/1%%® according to definition of dB

27d way: factor 4%6-0248 replacing above NoB by NoB=X/6.02.
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5.4.3.4 Quantization Noise Reduction by Noise Shaping and Filtering

(a) ®®
E d I
q y 1 /// Eq Kpa ! v
X X _ /
i —é——» —>@—> (1-zhM —(\—»é)—»é)—:—->
_ - I
1 M-th order N I
Integrator N _ADC
k |e
B Xk
T T T T I
7 Kap I
|
A
© 4 ()
- - \ 1
-~ \. DAC 1
7w RRESE
u’ //
0 Fg 12 F

Fig. 5.4.3.4: (a) Feedback loop, (b) AX Modulator, (¢) shaped noise power Ey,ims(F)

A AY modulator consists of an integrator and a quantizer in the forward network and a feedback
network which is constant over frequency as shown in the figure above. As the quantizer works
time-discrete we use the time discrete integrator model, 1/(1-z1).

D50-¥ 20244, hY52011080: Wed Nov 28 00:33:33 2012
1.o0ve 2 100V 3 ooove 4 100V 0.0s 200.0&/ Stopp £ 218y

% Agilent
Erfassung
Warmal
. 20.0M5a/s
ﬂL & K anale
L oC 1.00:1
OC 1.00:1
~oc 1.00:1

q'

m-m
Ve

Screen shot from oscilloscope of 2nd order AX modulator. Yellow: input signal to AX ADC.
Green: its 9-level modulator's output. Blue: lowpass filtered (=demodulated) green curve.
Red: blue curve AZ modulated with 9-level quantizer.
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The screen shot above shows:

1. Yellow, X in the AX schematics above: Approximately rectangular analog input voltage to a
2nd order modulator (voltage CP_in P of DA2 board of course PRED).

2. Green, Y in the AY schematics above: Modulator's output, i.e. the output of the 9-level
quantizer 'jumping' fast around the yellow input signal. (To make this digital output visible
as analog waveform it was measured at the output Xi of the DAC in the feedback branch as
voltage DAC3out of DA2 board.)

3. Blue, (not in the AY schematics above): This is the demodulated signal (green) Y.
Demodulation is nothing else than lowpass filtering. The blue curve is the output of the AX
ADC. (This originally digital signal and was made visible with a 256-level R2R DAC as
voltage DAC1out of DA2 board.)

4. Red, (not in the AZ schematics above): This is the re-modulated blue ADC output. This was
done by a 1st order digital-to-digital AX modulator with a 9-level quantizer. (This originally
digital signal and was made visible here a 9-level DAC as voltage DAC2out of DA2 board.)

Ilustrating the Power of Oversampling and AX Modulation

Table 5.4.3.4 below illustrates the power of AX modulation computing the quantization noise
power reduction in the baseband 0...fs. Oversampling ratio is OSR=fy/2-fs with sampling
frequency fs. It is assumed that we have quantization noise only and ideal lowpass filters to
remove frequencies > fz.

Example 1: We want to lower quantization noise power in the baseband by 60dB,
corresponding to a factor K=1000 in rms voltage or some 10 bits. Obtaining that by simple
oversampling requires to increase sampling frequency fs by a factor K?>=10°. An ideal 1% order
A% modulator could obtain the same SNR improvement with increasing fs by a factor 126 and
an ideal 2" order modulator could obtain that with an OSR of 27.

Example 2: We have music in the baseband 0...25KHz sampled with fs=50KHz. Noise power
reduction of 60dB in the baseband obtained by plain oversampling requires to increase fs by a
factor K?>=10° to f50=50GHz. An ideal 1% order A modulator could obtain the same SNR
improvement with increasing fs by a factor 126 to f;;/=6.3MHz. An ideal 2™ order modulator
could obtain that with an OSR of 27 and consequently f;>=1.35MHz.

Table 5.4.3.4: Theoretically obtainable SNR improvements. Taken from [Leme, PhD...]

SNRz 20dB 40 dB 60 dB 80 dB 100 dB
OSR(order =2) 5 11 27 67 168
OSR(order =1) 6 28 126 578 2657
OSR(order=0) 100 10322 1,05E6 106E6 1,08E10
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Modulator Overloading

The output of the 1st order AX modulator shown in the lower (red) curve of the screen shot
above has no jump over 2 A's, although the 9-level quantizer would make such jumps possible.
This output could be realized with a 2-level quantizer with no further problems.

Observe the output of the 2nd order A/D modulator, i.e. the green curve in the screen shot
above. While the output signal is more or less constant we find jumps over 2 A's. This is because
a 2nd order modulator required 2A-jumps. A 2-level quantizer offering A-jumps only is said to
be overloaded. But it is still stable.

Increasing the order of a AX modulator pushes more noise to higher frequencies. This can be
observed by jumps over several A's. If the modulator needs to jump over more deltas than the
quantizer can realize we call this overloading. A 2nd order modulator is still stable with a 1-bit
(=2-level) quantizer and delivers relatively good results. Higher order modulators become
unstable and loose accuracy in case of overloading.

AX Noise Power Reduction in Baseband 0...fs :

Key message: The quantization noise in the baseband 0...fz with OSR=fs/2fs, and Korder being a
constant, we get

2
2 _ Korder — E — Korder
7.8 OSRZorderH q,B,rms OSRorder+1/2

The noise power within baseband f=0...f3 is reduced proportional 1/OSR*?"der*1,

Predication 1, using M = AX modulator’s order (see proof 1 below:

A AX modulator with M-th order integrator has a constant signal transfer function (namely
STF=1/k4p) and a noise power spectrum shaped according to 2Cyrsin>”%"(nF) over relative
frequency F=f/fs, with Corder being a constant. Figure 5.4.3.4(c) illustrates first order shaping of
effective error amplitudes Eg,rms.

Predication 2 (see proof 2 below):
The noise shaping can be quantified as

M
EX(F)=E>-2C, sin™ (zF) with C, ==-2.2. =2-Hi

Predication 3 (see proof 3 below):
The total quantization noise powerEq2 and amplitude E_, = 1/E; , that is generated by the
quantizer. Its part within the based /=0...fs (corresponding to F=0...F) is reduced to:

EX = E;CM K 2M; _ E .y CM i M;
B oM +1\2 ) OSR*MH oBms s\ 412 ) OSRMHOS
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Application to 1°* Order AX Modulator: M=1
C/=2 and hence

PO . RS
B o +1\2)  osR*™ T T3\ 2 ) osr®

and hence

[ 2z
2
qBrms EqB qrms\/gz OSR

Note

OTH Regensburg

(1) This is the quantization noise power in the baseband /=0...fs. A non-ideal lowpass will

allow more noise power to pass.

(2) The output of a 1% order AX modulator performs jumps over one A. Therefore, a single-

bit output is well.

Application to 2nd Order AX Modulator: M=2
(C>=8/3 and hence

o _ECh (xYY 1 a8(m) 1
5T oM+1\2) OSRMT T T115\2 ) OSR®

and hence

e /8 21
Eq,B,rms: Eq,B :Eq,rms E(E) 0SR2,5

Note

(1) This is the quantization noise power in the baseband f/=0...fs. A non-ideal lowpass will

allow more noise power to pass.

(2) The output of a 2" order AX modulator performs also jumps over 2A. Therefore, a single-

bit output is called overloaded but still works stable and surprisingly well.

Application to Higher Order AX Modulator: M>3,

Higher order modulators are difficult to construct and generate considerable high-frequency
noises power with jumps over several A’s. Particularly when the output is overloaded severe
stability problems must be solved [Norsworthy,Schreier,Temes: “AX Data Converters™].
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Example:

We want 1 bit more accuracy for our oversampling ADC. It is demodulated by an ideal lowpass
with cut-off frequency fp. Instead of improving the quantizer we increase the OSR. By how
much must the OSR be increased for M" order (M=0,1,2) AX modulation? (We assume that
there are no other noise sources than quantization noise available.)

1 bit is a factor 2 in voltage and consequently a factor 4 in power.

0" order modulation (M=0, is no modulation and no noise shaping, could be PWM):
1 1

=> increase OSR by factor 4.

4 OSR

1* order AY modulator (M=1):

%= ﬁ => increase OSR by factor V4 2159,
2" order AY modulator (M=2):

%z O;RS => increase OSR by factor V4 =132.

Exercise 1:

We want 20dB more accuracy for our oversampling ADC. It is demodulated by an ideal lowpass
with cut-off frequency fs. Instead of improving the quantizer we increase the OSR. By how
much must the OSR be increased for M order (M=0,1,2) AX modulation? (Assume that there
are no other noise sources than quantization noise.)

Exercise 2:

1/2 M
Prove with Matlab that [2C,, sin® (zF)-dF =1, when C,, = %
F=0 k=1 -
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Solution to Exercise 1 (M = AX modulator’s order):

We want 20dB more accuracy for our oversampling ADC. It is demodulated by an ideal lowpass
with cut-off frequency fs. Instead of improving the quantizer we increase the OSR. By how
much must the OSR be increased for M order (M=0,1,2) AT modulation? (Assume that there
are no other noise sources than quantization noise available.)

20dB is - by definition - a factor 100 in power.

0th order modulation (M=0, is no noise shaping):
1 1

100  OSR

=> increase OSR by factor 100.

1st order AYX modulator (M=1l):
1 1

100  OSR’

=> increase OSR by factor 3100 =4.64.

2™ order ATX modulator (M=2):
1 1

100 OSE’

=> increase OSR by factor 3100=2.51.

Solution to Exercise 2:

% Prove that integral (2CM*sin (pi*F)"2M) == 1
h=le-5; F=0:h:0.5; Mmax=14;
W=sin (pi*F); W2=W.*W;

W2M=W2 ;
C(1)=(2/1); % CM
I(1)=2*C(1l)*trapz (W2M)*h; % Integral using trapezoidal rule

plot (F,W2M); hold on, grid on;

for M=2:Mmax;
C(M)=C(M-1)*(2*M) / (2*M=-1); W2M=W2M.*W2;
I(M)=2*C(M)*trapz (W2M) *h;
plot (F,W2M) ;

end; hold off;

C, I % plot CM and I(ntegral)
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Proof 1: Noise amplitude shaping according to sin¥(nF)
Fig. part (a) above illustrates the typical feedback loop with signal and noise transfer functions

X A a1

STF =—= >—,
X 1+k4A4 k

NTF _r_ 1 Ki=>e 50,
E 1+k4

Applying that to the Delta-Sigma modulator in Fig. part (b) delivers

STF = X = A(Z) ‘kDAA(ZN—)oo N 1 )
X 1+k,,A(2) ko,

NTF = L = 1 [IGECIN 1 0.
Eq 1+k,,A(2) kpA(z)

with kp4 being the amplification of the DAC (e.g. in V/bit). Using the ADC’s amplification k4p
(e.g. in bit/V) the forward network is given by

kAD
ey

where 1/(1-z"') models the time-discrete integrator. Consequently the NTF can be modeled as

NTF = [kpsA(z)| >0 1 _ (1 _Z—I)M
k;,,A(2) k,pkp,

Using k,,, =k, k,, (wWhich is a dimensionless constant) delivers

SNM M2
NTF = —kpad@)lo >(1_Z ) _Z (Zl/z_z—l/zy".

k ADA k ADA

. . 5 N
Using z =&’ =/ =&/*™ delivers

-M/2 -M/2
NTF = @l 2 (Z1/2 _Z—1/2y‘4 _z

kADA k ADA

-M/2
z

(ej”F —z‘j"wa =2j sin¥ ().

kADA
As we are only interested in amplitudes of noise shaping only we use a constant K to write

INTF|= —225 K, -sin (7F).
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Proof 2: Noise shaping according to sin?”(nF)
The compute the constant factor Ki in the formula above, we recall to mind that the total
quantization noise power E qz is given by time domain considerations. So we write

E;,AZ (F) = E; 'WAZ (F)

with shape function Wis(F)=2Cusin®*(zF), where constant Cy was selected such, that
1/2 1/2

j W, (F)-dF = j 2C,, sin™ (F)-dF =1.

F=0 F=0

It can be shown that [Bronstein Semendjajew]

c ==.2.2. -
M1 35 T oM -1

246 2M M 2k
k=1 2k_1

Proof 3: Noise power reduction is according to 1/0SR*M*!

As AX modulator is based on oversampling with OSR=fs/(2f3) > 1, the noise power in the
baseband F=0...Fs (corresponding to real frequencies f/=0...f3) is given by

Fp Fy
E;,B =qu' IWAE(F)'dF:quzCM ISinzM(EF)-dF.
F=0 F=0

As the integral over sin®” for any Fj is difficult to evaluate we assume for sufficiently large
OSR=1/2F the approximation sin(x)=x for x<<l1. In this case the integral above becomes

2 2M
E;2C, 7 2M+1

Fy Fy
2 2 < OM ~ 2 oM _
E}, = E;2C, [sin®(aF)-dF = E}2C,, [(z)" -dF = T

F=0 F=0

The substitution Fz=1/(2:OSR) delivers the desired dependency on the OSR:

2 2M M
E* = E‘ICM (Z) 1 = E =F Cy (1) 1

“5 oM +1\2 ) OSRMM aBms —Zams\lopr 4112 ) OSRM*OS
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5.4.4 Euoniin : Noise Due to Non-Linearity

Non-linearity are errors that do not occur randomly but always for certain input voltages. Their
effect is visible in parameters like THD (total harmonic distortion, German: Klirrfaktor), SFDR
(spurious free dynamic range), INL and DNL (integral and differential non-linearity,
respectively).

Non-linearity is a noise source that typically cannot be improved by the customer of an A/D or
D/A converter and should therefore be included in the data-sheets best-case SNR of the ADC
or DAC.

Best-case models:

DAC: Ubacout = Apa Npac,in ADC: Napcou = round(Uapc,in | AuD)
Best-case models with offset voltages:

DAC: Ubacour = Apa-Npacin + Uog;na ADC: Nupcour = round(Uapc.in -Uofrap) | Aap)
Examples for including non-linearity:

ADC: N e o = round (ao +aU jpe + 0, 'Ufzwc,m Ta, 'Ujoc,m + )

DAC UDAC,out = A0 + Al ' NDAC,in + AZNéAC,in + A3]vg/<16',1‘n tos
Furthermore we can introduce missing codes, e.g. by
if(N =316 and N < 512) then N=512 end if;

Non-linearities apper as harmonic distortion. The noise generated by harmonics is measured as
total harmonic distortion (THD) as defined in chapter 2 as

N

B S X =0 (= 1p R
THD="t=%2_ o g =Y|x(f,) =THD-|X(f,)|’=THD —
B X)) p= 8

THD ,,=10dB -log,, (THD)

whereas X is an amplitude like voltage or current and E7up is the effective (rms) voltage of the
harmonics, so we could also write E7up,rms.

PS: In audio applications we frequently find the definition

THD .= 100%\THD .
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5.4.5 Eyin : Other Internal Noise Sources

There are several other internal noises sources as Johnson noise of resistors or 1/f(=pink) noise
of FETs etc. However, it is up to the manufacturer to measure these noise sources and respect
them in the best-case SNR of the ADC or DAC in the data sheet.
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5.4.6 Euias : Alias Noise

External Noise. This is a noise that can typically be attenuated by external lowpass filters.

In the analog domain we use indices 4 and B, for attenuation and bandwidth frequencies, in the
digital domain we use indices C and D for cutoff and damping frequencies, respectively.

5.4.6.1 Computing Alias Frequencies

Assuming a real sampling frequency fs we define the relative frequency F'=f/fs. Due to the
theorems of Nyquist and Shannon the maximum frequency that can be represented is

f=0..%f & F=0.7%

If we sample frequencies higher than '4fs does not obtain lowpass filtering but causes aliasing,
1.e. the sampled frequency is observed at

Satias = | f— fs round(f/fs) | & Falias = | F —round(F) |.

This might yield negative frequencies corresponding to a phase shift. The amplitudes of original
and alias signals are the same.

Exercise:

A typical sampling frequency for telephones is 8 KHz. Note at what alias frequencies the
following frequencies of the original voice will appear:

Original fre- - Alias frequency / KHz
quency / KHz

0.5 -

2 -

3.5 -

4.5 -

9 -

13 .

22 .

Solution:

A typical telephone sampling frequency is 8KHz. Note on what alias frequencies the following frequencies of the original voice will appear:

Original fre- - Alias frequency / KHz
quency / KHz

0.5 — ]10.5-0] = 0.5

2 — 12-0] = 2

3.5 - 13.5-0] = 3.5

4.5 - 14.5-8] = 3.5

9 — 19-8] =1

13 — 113-2-8| = 3

22 — 122-3-8| = 2
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5.4.6.2 Required Anti-Alias Attenuation

It is clear that these alias frequencies are perceived as noise and have to be removed before
sampling. When we want to suppress aliasing noise by X or Xus dB, then the anti-aliasing
lowpass has to this attenuation at the fs/2.

2
alias ,max

Next we check for our aliasing-noise-power budget E and compare it to the maximum

possible power of a sinusoidal signal swinging in the range R, which has the power R*/ 8. If
this signal is subject to aliasing its power has to be attenuated to

2 2
X = R7/8 & XdB=10dB-lg£ RS ):20dB-lg{ R/\/gl

2 2
alias ,max alias ,max

alias ,max

5.4.6.3 Required Order of Anti-Aliasing Filters

Bandwidth fz denotes the filter’s pass-band. 4
Stop-band attenuation X is guaranteed for /> f4 0 i
and Xas=20-log1o(X). '

g1ol¥) IH(jf)l / dB :

|
Assume equal amplitudes at the filter’s input. !
At the filter’s output Us is the pass-band XdB | N T ;
amplitude and U4 the attenuated stop-band fB fA 9
amplitude. We should get Us <X-Us.
Fig. 5.4.6.3: lowpass asymptotes.

Abbreviating logio with [g we can write the required filter order

v U -1eWUy)|_|IgW,1Uy)| | Xy
e/ )-1gU | et/ f)| 2048.1 ;

B

With function ceil for rounding up the minimum filter order is N = ceil %f
20dB-1g*4
/)

B

Example:

Xap = 60dB, fs=2KHz, f1=4 KHz. Compute the required filter order N:
N > ceil (60dB/ (20dB -1g (4Khz/2KHz)))) = ceil(9,965) = 10.

Exercise 1:
Xap = 60dB, f5=3KHz, f1=4 KHz. Compute the required filter order N:
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Exercise 2:

Xap = 60dB, fp=3.7KHz, Nyquist sampling, fs = 8 KHz. Compute the required filter order N:

Exercise 3: Given is a 8-bit ADC. Aliasing noise power must not exceed the quantization noise
power of a half LSB. What is the required attenuation of aliasing frequencies?

..............................................................

Practical Comment: If anti-aliasing filtering is necessary, a Butterworth filter is appropriate.
It has a flat baseband transfer function and —3dB attenuation in the asymptote’s kink at fz,
independently from filter order N.

1
Butterworth lowpass transfer function: | H 55 (jf) |= \/— )

(1 1)

Solution to exercise 1: X3 = -60dB, f;=2KHz, f; =8 KHz. Compute the required filter order N.

N > ceil (60dB/ (20dB-1g (4Khz/3KHz)))) = ceil(24.01) - N = 24.

Solution to exercise 2: X;3 = 60dB, f3=3.7KHz, fs=8 KHz. Compute the required filter order N:

N 2> ceil (60dB/ (20dB-1g (*-8Khz/3.7KHz)))) = ceil (88.6) - N = 89.

Solution to exercise 3: Given is a 8-bit ADC. Aliasing noise power must not exceed the quantization noise power of a half LSB. What is the
required attenuation of aliasing frequencies?
Required attenuation: X; = -(9 x 6.02 + 1,76)dB = -55.94 dB
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5.4.6.4 Matching Analog Anti-Alias and Digital Lowpass Filters

IH¢jjter! / dB
A
analog anti-aliasing filter digital lowpass
1 aliasing ‘
Y A Rk L |
~ B !
~ |
~ | |
~ |
T 1 T T T >
fa=  fs-fc  fni fs  fha fstfc fstfp f

fs'fD

Fig. 5.4.6.4-1: Necessity for an analog anti-aliasing filter: Guarantee sufficient attenuation at
f4=fs-fD to suppress aliasing, e.g. from f, to f’n.

Today we have a strong tendency to replace analog circuitry by digital circuitry if possible. The
figure above illustrates how to relax analog anti-aliasing filters by oversampling and subsequent
digital filtering. Frequencies that alias into a range suppressed by the digital filter may pass the
analog filter. If the digital filter reaches its attenuation at fp, then the analog filter has to suppress
frequencies in the range |nfs + fp| with n being a positive integer. For large OSR=f/2fs analog
anti-aliasing filtering can often completely be avoided. This is shifting lowpass filtering from
the analog to the digital domain. This is typical for AX ADCs, so that they can be identified by
having the lowpasses after instead before the sampler.

Note: In many systems — particularly microsystems — there is hardly space for anti-aliasing filters. Techniques
based on oversampling (such as AX ADCs) use high sampling rates to relax the demands of analog anti-aliasing
filters or even avoid them completely.

Exercise 4: Situation sketched in Fig. 3.1.4(a): An ADC feeds a telecommunication line,
required Xqp=56dB, Nyquist sampling, fs=8KHz, baseband edge fp=3.4KHz. What is the
required order of the analog anti-aliasing filter?

Solution to exercise 4:
Attenuation must be replaced at £f./2, therefore f,=fs/2:

N = ceil (X4s/20dB ‘1g(*s'f;/fs) = ceil (56dB/ (20dB '1g(4KHz/3.4KHZ) = ceil(39.7) = 40
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(@)  Hyjjter / dB

A
analog anti- aliasing
aliasing filter fs2 = m T ———
0 = ===\ =TT E T T T T T T T T - - T~~~
| - = =a >~
P Wl ~< ~
M’%’A{:‘_ _____ ~ =< \\ \\\\
A I | I |
- 1 o
XdB AL ] F T 1 | T T T I 1 ¥ —>
fn fg fa fn1 fg fn2 faz 2fg  fa f
(b)
IHgijter! / dB
A
analog anti-aliasing filter digital lowpass
0 1 aliasing I
ppep——— |
~ |
~ |
~ ~ I
-XdB T T T >

fg+fc  fs+fp f

Fig. 5.4.6.4-2: Demands for an analog anti-aliasing filter: Guarantee sufficient attenuation at
fa=fs-fD to suppress aliasing signals e.g. from fux to f’.

Exercise 5: Situation sketched in Fig. 5.4.6.4-2(b) above: The bandwidth available for the
telecommunication customer is 3.4KHz and is achieved by a digital filter: Cutoff frequency
fc=3.4KHz, required damping Dis=X45=89dB to be reached at fp=4KHz, sampling frequency
fs= 500KHz. The analog anti-aliasing filter’s bandwidth is set to fp=16KHz. (It has to be
> 3.4KHz but should not attenuate this frequency). What is the required order of the analog
anti-aliasing filter?

Bandwidth of the analog anti-aliasing lowpass:

fB=

fA=

..........................................................

Solution to exercise 5:

Bandwidth of the analog anti-aliasing lowpass: £ = 16KHz (given above)

Attenuation frequency of the analog lowpass: £ = £s-f;, = (500-4)KHz = 496KHz

Required order of the analog anti-aliasing lowpass:

N = ceil (Xsq/ (201g(fa/£fp)) = ceil (89dB/ (201g((500-4)KHz/16KHz)) = ceil(2,98) = 3
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5.4.7 Ecuj: Noise Caused by Clock Jitter

If the custormer can control clock jitter — also called dither or phase noise — depends on the
particular device and/or situation. (Example: max2880: 0.25...12.4 GHz, 0.14ps rms jitter.)
See also: https://www.maximintegrated.com/en/app-notes/index.mvp/id/3359 and

We assume a constant signal slope s'(t)=s . Furthermore a Gaussian distributed sampling-timing
failure z with standard deviation 6. Then we get an error e(7) = s7 with a Gaussian probability
distribution having standard deviation . This delivers

2,2

e as jw(r)dt =1 is required.

MO =

The Total power is consequently given by

2

clkjrms _I (7)-w(r)dr = I(ST) «/ﬂ 2 dT 2_[(5"[) 0'\/_ ;'zdl'—o_\/—jr e 2 dr

0

Using Ixze’”zx dx = —72 for a>0 from [Bronstein-Semendjajew] with a® = 5
. 4a 20
. o0 2
delivers Eclkj s = ere_“ “dr =214 J; =(so)’.
0 \/_ 4a 2a°
The result is surprisingly simple: E s = (50)° (5.4.7-1)
E s =Sl (5.4.7-2)

From a very simple linear point of view this
model makes sense as illustrated in
Fig. 5.4.7-1. However, this is a very rough 8

!

I
I
approximation  and literature  offers % I e
R .. .. 1 clkj,rms
significantly more sophisticated jitter models, I
e.g. [1] - [4]. ! R
5 > time

Fig.5.4.7-1: E = |S|0' as linear view.

clkj ,rms

Using (5.4.7-2) we can make different assumptions on §°. With carrier frequency o and
sampling time jitter o being constants we assume in Fig. 5.4.7.-2(a) that sampling the in-
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phase part I(t) cos(mct) of a QAM64-signal in its extrema delivers constant signal slopes s> from
the quadrature-phase part Q(t) cos(wct). In this case we get
5 =(0w,)’ (5.4.7-3)

In the Fig part(b) we assume sampling of signal a s(t)=A sin(wct) at random time points yielding
an average signal slope at samplint time of

§? = (4w, 12)’ (5.4.7-4)

Although these models might be extremely rough approximations, they give us a rough figure
of what results we might expect.

(@) Sgam(t) =Q(t) sin(e.t) + I(t) cos(w.t) (b) random sampling time points
Saam(t)
7 4 ~ ~—— Qt) sin(ot) $
ff A A /
i LY
5 i 4 s A P
A /T
i
3 ! !

¥

1
1
1
1
1
1
1
‘ 0
~ bt

T
!
3 i 1
I"| "‘ :
! ! !
5 / L ; A BV g

-7 at

N |

——

Fig. 5.4.7-2: (a) |s| (red) ist constant in sampling points, (b) We getverage |s|

Bettor models are given in the references below, such as spectral noise power density

L(f) = Tt 5.4.7-5
() Iz ( )

with frequency offset f from oscillator frequency fosc and cycle-to-cycle jitter .. It is measured
in dBc/Hz, with dBc being dB with respect to carrier at fosc.

Some References Concerning Clock Jitter:
[1] Phase noise, Wikipedia, Available 21.06.2017: http://en.wikipedia.org/wiki/Phase_noise#Definitions.
[2]  Phasenrauschen, Wikipedia, Available 21.06.2017: https://de.wikipedia.org/wiki/Phasenrauschen
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[3] Maxim Integrated, Applicaton Note 3359, Clock (CLK) Jitter and Phase Noise Conversion, Available
17.06.2017: https://www.maximintegrated.com/en/app-notes/index.mvp/id/3359.

[4] Maxim Integrated, 250MHz to 12.4GHz, High-Performance, Fractional/Integer-N PLL, 0.14 ps integrated
RMS jitter, vailable 17.06.2017: https://datasheets.maximintegrated.com/en/ds/MAX2880.pdf.

[5] Analog Devices, Brad Brannon: Sampled Systems and the Effects of Clock Phase Noise and Jitter,
Application Note AN-756, Available 21.06.2017: http://www.analog.com/media/en/technical-
documentation/application-notes/AN-756.pdf.

[6] Google search: Figures about clock jitter: https://www.google.de/search?q=jitter+noise&client=firefox-
b&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwivjvKhoMTUAhVIZ1AKHaqpB8EQsAQIPw
&biw=1645&bih=946.

Exercise 1:
We assume sampling of the sinusoidal curve 4-sin(w.t) at random time points. Given constants
are standard deviation 4, 6 and w.. and Vce. Compute Ecik,rms.

Combining (5.4.7-2) E =|slc with (5.4.7-4) ?:(ch/z)z delivers

clkj ,rms

Compute maximum SNR and SNR4s achievable with A=3V, 6=1ps and f-=2.4MHz, Vcc.=3V.

SNR = (3V)2/8 / (31.98uVv)2 = 1.099°10° <« SNRgs = 90.41 dB

SNRsze = 10 ‘1ogl0 (SNR) 90.41 dB

Exercise 2a: Fill the gaps:

A QAMO64 signal is given by  Soam(t) = I(t)-cos(wct) + Q(t)-sin(wct) with

we =2mfe=2w2.4GHz RF carrier frequency

It) =md/2, m==%I, £3,.... £#M In-phase signal, coming as [-phase envelope,

O@t) =nd/2, n=%I, £3,.... +N  Quadrature-phase signal, coming as Q-phase envelope.

It allows to represent . . . . .. different values atatimeby . ...... different /-
and ....... different O-values: QAA/2), I/(A/2) = . ... .. ...
This correspondsto .. ........... parallel bits.

Exercise 2b:

A QAM signal is given by  Soam(t) = I(t)-cos(wct) + Q(t)-sin(wct) with

we =2mfe=2w2.4GHz RF carrier frequency

I(t) =md/2, m==%I, £3,.... £7  In-phase signal, coming as I-phase envelope,

O@t) =nd/2, n==%Il, +£3,.... £7  Quadrature-phase signal, coming as Q-phase envelope.
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We use a phase-locked loop (PLL) to sample in-phase signal /(2)-cos(w.t) at its maxima. Noise
ratio NR = Imin/Ecikirms has to be at least 20dB larger than the noise power caused by the
quadrature-phase signal Q(?)-sin(wct) at maximum amplitude Oma=7-A/2. What maximum
standard-deviation ¢ of timing failure t can we allow for the PLL?

Imin(A) T e e e e e e e e e e ) Qmax(A) BRI

The worst-case slope of the O-signalis . . .. ... ...ttt i e
Its rms noise voltage dUe t0 G 1S ©clkj,zms = « v v vt vt vttt e it e ettt e e

Use this 1S ecikj,=ms to compute the ¢ we can allow for sampling the O-signal

Solutions:

Exercise 1:
We assume sampling of the sinusoidal curve A-sin(w.t) at random time points. Given constants are standard deviation 4, 6 and @.. and V.
Compute Ecigjms.

Combining (54.7-2) E . . = |.§|0' with (5.4.7-4) §° = (4@, /2)? delivers

Ecikj,ms = 6 Aw./sqrt(2) = 1lps-(3V-2m-2.4MHz/sqrt(2) = 31.98pv
Compute maximum SNR and SNR, achievable with 4=3V, 6=1ps and £,;=2.4MHz, Vc.=3V.
SNR = (3V)2/8 / (31.98uV)2 = 1.099-10° <& SNRgyp = 90.41 dB

Exercise 2a: Fill the gaps:

It allows to represent . . 64 . . different values at a time by . . .8... different /-
and . ..8... different O-values: Q/4/2),1/(4/2)= *1, *3, £ 5, £+ 7 .
This corresponds to . . .. ... 1d(64) = 1n(64)/1n(2) = 6..... parallel bits.

Exercise 2b:

Lyin(A)= ... .. A2....... y Onax(D)= .o oo AT/2... ...

NR ;5 =20dB corresponds to a factor NR = . .10. .. in amplitude.

The worst-case slope of the O-signal is . .s' = Quax 2n fc = 7(A/2) 2m fc.

Its rms noise voltage due to 6 is €cikj,rns = S'0 =.Quax 21 £, = l4mo (A/2) “£.

Use this is ecixj,zms t0o compute the ¢ we can allow for sampling the O-signal

From NR < Tnin / €cikj, rms Tnin / (s'o)

(a/2) / (o 2m 7(a/2) £.)
1/ (o l4n £.)

follows: 0 £ 1 / (NR 14m £,) = 1/(10-14n-2.4GHz) = 0.947ps

Note: this is 0.227% of a 2.4GHz period, which is 1/2.4GHz = 417ps
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Sources of clock jitter are particularly circuits like

DLL: Delay locked loop

PLL: Phase-locked Loop

CDR: Clock-Data Recovery Circuit

Software: Clocks signals computed by software

b

1. DLL: Delay Locked Loop

Operates a (typically voltage) controlled delay. It can delay a clock signal so that a retardation
(for example caused by buffering the signal) can be compensated for.

+ Best (=smallest) figures of phase noise.

- Frequency differences cannot be compensated for (use signals from same clock source!).

2. PLL: Phase Locked Loop

Operates a (typically voltage) controlled local oscillator (LO). It can shift frequencies to match
received frequency and phase. It is used e.g. for demodulation of FM and AM radio signals.

+ Can synchronize its local oscillator (LO) to a range of external frequencies

+ Better phase noise than CDR, worse than DLL

- Continuous, uniform oscillation required, no “missing bits” on the data stream!

3. CDR: Clock Data Recovery Circuit

operates a (typically voltage) controlled local oscillator (LO) with a phase detector, that can
swallow missing bits on a data stream. Used to recover the clock signal for USB bit-streams:
However, in the USB community the CDR is mostly termed PLL. A good CDR can hold
synchronicity over some 1000 bits without an edge (i.e. some 1000 ones ore zeros only)

+ Can synchronize its local oscillator (LO) to a data stream with randomly arriving bits.

+ Better phase noise than software, worse than DLL and PLL.

3. Software generated clock signals

The author’s experience with 1’s and 0’s set be software to generate a clock signal are bad. The
process of software processing and interrupt handling within a CPU is difficult to control and
phase noise is quite unacceptable.

- No special hardware (DLL, PLL, CDR) required (making it attractive to many engineers).

- Typically poor phase noise.
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5.4.8 Ers&n : Noise Caused by the Track & Hold Circuit
5.4.8.1 Ideal Sample & Hold Process

Using the fact that Ié (t)dt =1 the process of taking a single sample is mathematically modeled

as
ya) = [y()5(t - aydt.

with J(t) being the Dirac function. Sampling, i.e. the process of translating a time-continuous
to a time-discrete function, is described as

Y= [yt —nT)dr

Unfortunately, there is no technical realization of this mathematical concept known to the
author. In real systems track and hold circuits are used.

5.4.8.2 Track & Hold Process Assuming a Maximum Voltage Step
(a) (b)

e/2

Fig. 5.4.8.2: (a) Track & Hold Circuit, (b) waveform on the holding capacitor.

A typical track & hold circuit can be modeled as a switch with RC lowpass as shown in the Fig.
Above. The resistor Re; consists of an internal resistor R; and an external resistor Re, which is
the output impedance of the signal source:

Rei = Ri + Re
The customer’s impact on this system is given by Re and an the track- & hold-times of the
sampler. During tracking, the switch is conducting and during hold it is open. In the worst case,

a maximum initial voltage Ucio (indicated as range R in the graphics) on the capacitor has to be
discharged to zero. The discharge curve of the capacitor’s voltage is then
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t

U, ()=U,,-e ¥ & =R C  -In-daw
Cz(t)

reaching the final accuracy of |Uci(1rack)| < A/2* with settling time
U 1
Tmck - R C ln A/Czok :

For an NoB-bit ADC with A=Ucio/2V8 we get

U, U.,.
=R,C,-In =R,C,-In| —___|=R C,-In(2""*").
Track [A/ij el i (UGO /2NoB+k] el i ( )

Using /n(x") = n-In(x) delivers the formulae typically found in data sheets for NoB-bit ADCs:

=R.C.(NoB+k)In2= R.C,(NoB+k)-0.693],

Track ei i ei i

With sampler cut-off frequency f. =1/(27R,C,) this translates to

N

Track :—(NOB‘i‘k)]_nZ; OII(NOB+k)
2rf, 7

Typically £=1 is assume and consequently an accuracy of A/2 to be achieved.
According to Nyquist the maximum bandwidth that can be sampled is

1

N | —

1
S5 :Efs =

tTrack + tHold
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Exercises

Exercise 1:
Assume track=9ns sampler-settling time and an ADC’s conversion time of z#oi=11ns. What is
the maximum possible sampling frequency fs of the sampling system? (formula + value)

Exercise 2:
Regard your sampler as RC lowpass composed of Rei=1K<(2 C=1pF and a required accuracy
NoB=10 bits. Compute the required minimum time for #7vack.

Exercise 3:
Compute the bandwidth, fz, when t7rack=tHoia for the setup in exercise 2.

Exercise 4:
Compute the cutoff frequency for the setup in exercise 2.

Solutions

Solution to exercise 1:

Assume f7,,=9ns sampler-settling time and an ADC’s conversion time of #;,,~11ns. What is the maximum possible sampling frequency fs of
the sampling system? (formula + value)

fs = 1/Ts = 1/ (trrackttuoa) = 1/(9ns+llns) = 1/20ns = 50 MHz

Solution to exercise 2:
Regard your sampler as RC lowpass with R,=1KQ, C=1pF, NOB=10. Compute the required minimum time for ¢z, with A=1.
trrack 2 (NOB+k) ReiC; - 1n(2) = (10+1) 103Q-107'?F - 0,693 = 7.62 ns

Solution to exercise 3:
Compute the bandwidth, fz, that can be sampled when #4,/ = t7c for the setup in exercise 2.
f5 (thora=trrack) = 0.5-fs = 0.5 / (2-7.62ns) = 32.8 MHz

Solution to exercise 4:

Compute the cutoff frequency of the sampler’s RC lowpass for the setup in exercise 2.
fc = 1/(2nRe:C;) = 1/(2m-103Q-10-12F) = 159 MHz
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5.4.8.3 Track & Hold Process Applied on Dynamic Input

The following considerations for dynamic input are irrelevant for the ADA exam.

THold

TTrack ~ ATHoId

>l <
>|<

L

P TTrack . ATHoIdJA TTrack _ ATHoIdJA TTrack .
>l |« >l >« >

——— T=1/f e T=1/f > ——— T=1/f—>f——— T=1/f—>

Fig. 5.4.8.3: (a) sampling system, (b) RC discharge curve

The formula found in data sheets and text books is typically ¢77ack(NOB) = (NOB+1)R.iC In2.
The consideration below sets some question marks behind it.

Assuming the case of ideal sampling with ##0.7=0. Then Uci(f) = Hrr(f)-Uin(f) with

1
HLP (f) = f
I+ j=—
fe
and f. = 5 I; - The sampler's amplitude attenuation of a sinusoidal signal is consequently
7 el i
Uin (f)

2
I+ (fj
fe
Let signal s(z) = (R/2)sin(2nfst) at bandwidth edge /5 span signal range R, witch is subdivided

by a NOB-bit ADC into 2V95-1 deltas according to A=R/(2 NOB-])=R-2- OB, The maximum
amplitude error caused by the sampler's attenuation is

R R
ET ck :Uin,max _UCi,max :5_|HLP(fB)|E=__—'_

ra

On the other hand we have

_5'2 0B _| = oNOB+I

A1 R _ R
2
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From |ETmck S% we get
R___R2 < R => 1—;S2‘NOB == 1+ Jo S;
2 2 2NOB+1 2 fC (1 _ 2—NOB)Z
1+ Jo I+ Js
Je Je

and consequently

fc “\l {=pNoB

For x<<1 we can use

=1+x and (1+x)> =1+ 2x. Substituting x=2"V98 yields
—Xx

2
&S (1 ;_NOBJ 1~ /(1+2—NOB)2_ ~ \/1+2—NOB+1_1:\/2—NOB+1 — p-(NoB-)/2

fe

In summary, to prevent the sampler's RC lowpass from causing amplitude errors > A/2 the
bandwidth of the sampled signal has to be limited to

f 1 _NOB-1

JB - 0 2
S 2(1\/03—1)/2 =2

fe

Exercise 6:
Compute the theoretical maximum of bandwidth, /s, for the sampler and ADC in exercise 2
(having fc=159.15 MHz from R..=1K, Ci=I1pF, NOB=10).

Exercise 7:
Compute the transfer function Hrr(f3) of the sampler's RC lowpass and show that the error is
ca. A/2.

Solution to exercise 6:
Compute the bandwidth, fz, when #7,.=tm0 for the sampler and ADC in exercise 2.
£ = £c/2W0B-1) /2 = £./2(10-1)/2 = 159,15 MHz/2%5 = 159.15 MHz/22.6 = 7.03 MHz

Solution to exercise 7:

Compute the transfer function H,p(f3) of the sampler's RC lowpass and show that the error is ca. A/2.
Hip(£f5) = 1/sqrt(l+(£fs/£c)2) = 1/sqrt(1+(7.03/159)2%) = 0.9990, so that 1-H;;(fz)=10"3. Considering
a signal range of *R/2 subdivided into 2!°Ax1000A, 1/1000 of R/2 corresponds to a half A.
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5.4.9 E,.x: Other External Noise Sources

There are several other external noises sources as Johnson noise of resistors or 1/f (pink) noise
of FETs etc. Noise models are typically difficult to obtain. Here we consider thermal or so-
called Johnson noise, which has an easy and reliable model, as well as pink noise.

5.4.9.1 E; : Johnson = Thermal Noise

Due to temperature, atoms oscillate around their atomic lattice sites kicking electrons around
which can be measured as thermal noise.

While capacitors and inductors do not contribute Johnson noise, any resistor has a noise spectral
density of

P(f,T)=4kT in J=VAs=Ws=W/Hz

with Boltzmann’s constant &=1.38065-102*J/K. and T being the absolute temperature in Kelvin
(=temperature in °C+273.15). Note that the physical dimension of noise power density is
power/Hz! This density is constant over the frequency axis. (In reality, this would deliver an
infinite power for infinity bandwidth, but this formula is valid up to the Terra-Hertz range.)

Examples:
P(f,T, =300K) = 4-1,380662 10> (Vs / K)-300K =1,6568-10™VAs

P.(f,T, =600K)=3,3136-10""V4s

P.(f,T, =900K)=4,9704-10""VAs

@ A Fm (b) () (@)
-20
10 VAs T2=900K —
4,970 3 lui’
To=600K ~7
3,314 I
Ah
1657 T4=300K
0 T T
0 1K 1M  f/Hz

Fig. 5.4.9.1.1: (a) Noise power density of a resistor for 3 temperatures, (b) noisy resistor,
(¢) equivalent circuit with noise voltage and (d) noise current source.
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Example: The thermal noise power generated by a resistor in frequency band B=10...11 KHz at
a temperature of 71=300K is

11KHz
P = j P,(f,T, =300K)df =P,-B=4kTB =1,657-10""VA4s-1000Hz =1,657-10"" V4

10KHz

As Johnson noise is constant (,,white”) over frequency, integration reduces to a simple
multiplication with bandwidth B:

P, = 4kTB

.2 2 . .
As P, =u,,. /R=i,, -R this power is measurable as

noise voltage u, . =+/P,-R=4kTBR in V & u,, =P -R=+4kTR in V/Hz

noise current i, =\/PJ/R =\J4kTB/R in 4 iy m =Py /R=~N4kT /R in A/~NHz

Consequently, in our converter noise models with error Ey,ms being a voltage we get

2
E J,rms

=4kTBR in V2 & E,  =+4kTBR in V

See also: “Tontechnik-Rechner — segpielaudio”, available: http://www.sengpielaudio.com/calculator-noise.htm.

Exercise 1:

In a design with signal range of 0...Vcc=3.3V you have a thermal noise power budget
corresponding to an accuracy of 14 bit. Your Bandwidth is B=100MHz. Maximum operating
temperature is 7=400K. What is the maximum resistor allowed at the ADC’s input?
(k=1.38-102J/K) (Solution at — next page)

Exercise 2:

Same as exercise 1 with B=2.4GHz. Maximum resistor R=? (Solution at — next page)
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Exercise 3: Compute rms thermal noise density across capacitor C
Fig. 5.4.91.2:

(a) RC lowpass with noisy resistor. ‘ C _l_I lUC,eﬁ‘

(b) RC lowpass like above with noiseless
resistor and equivalent noises source
u’R,rms. Un,effl C l UC eff
T ’

Compute the noise power across capacitor C in Fig. 5.4.9.1.2 caused by resistor R. Capacitors
and inductors do not generate thermal noise.

2
R,rms

Compute the spectral thermal noise power density u", (f) generated by resistor R as a

function of k, 7, R with k being Boltzmann’s constant and 7 absolute temperature in K.

u'i,rms (f) = 4kTR

Let Hrr(f) be the transfer function of the low-pass. What is the spectral noise density across C
as a function of u'r rms(f) and Hrr(f)?

u'é,rms (f) = u'i,rms HLP (f)|

For a first order low-pass with pole in f5 the transfer function is Hrr(f)=1/(1+if/fs). What is
the spectral noise density across C as a function of u'rms(f) and f/fz?

12 _ 12 1

u = u T o
C,rms R,rms 1+(f/fB)2

Exercise 4: Approximation of u é,m )

We approximate | H.r(f)| piecewise with its asymptotes:

L f</s

H =|H =
Hir = [H i (1) {fg/f if 21

Compute uém by piecewise integration as function of u'z s and fp, both being constants.

o0
2 ~ 12
uC,rms = Iu R,rms
f:

0 /=1

2 /5 © 2
HLP,approx (f)‘ ’ df - u'?a,rms [ Ilzdf + I (%J df] = 2fB
/=0 S=15
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Exercise 5: Exact computation of u/ .

As the lowpass is of first order, we can calculate an accurate solution of the integral using the
df

mathematical textbook equationj1 /)
+(x/a

5> = aarctan(x/a).

5 © © df . P
uC,rms = u R,rms LP(f) df R rms T, N2 fB [arCtan(f/fB)] =0 = fB —= 157fB
j i fjf 1+ (f/ f5)? ! 2

Solution to exercise 1:

Planning a design with signal range of 0...V¢=3.3V you have a thermal noise power budget corresponding to an accuracy of 14 bit. Your
Bandwidth is B,=100MHz. maximum operating temperature is T=400K. What is the maximum resistor allowed at the ADC’s input?
(k=1.38-10%J/K)

2
2 2
VCC i Urms,max VCC / 8
Signal power is Urmb max — .+ available power budget 214 = 22*14 =5.071 107°V?
2
Ve./8 V2.8
Consequently: 4kTBR = % = R :Lz*m = 2,30 KQ
2 4kTB -2

Solution to exercise 2:

Same as exercise 1 with a bandwidth of B,=2.4GHz. Maximum resistor R=?

We compensate for the division by B=100MHz by a corresponding multiplication with B and then
divide by the new bandwidth B;=2.4GHz: 2.30KQ-B/B, =-2.30KQ-100MHz/2.4GHz = 95.65 Q

Solution to exercise 3:

2
The integration -”H approx ( f )‘ df delivers 2f;. In the exact computation we get
/=0

J‘|Hexact(f)| df = IW fg[arctan(f/fB)]f . fB Z-0|=fm/2.

Consequently, the exact result here is obtained from the approximated result with

J. exact fB7Z- /2 ~ ﬁ

© uC,rms,apprux 2 - uC,rms,apprux
Is

J approx

=510.2nV

uC Jrms.,exact uC ,FMS ,approx
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5.4.9.2 Epini : 1/f=Pink = Flicker Noise

Particularly in semiconductors and semiconductor/oxide interfaces, we find the so-called flicker
noise, also termed 1/f noise or pink noise. "Pink" stems from the fact that 1/f~shaped visible
light would be perceived pink. Fig. 5.4.9.2 illustrates a typical 1/fspectral noise density, part (a)
with linear and (b) with logarithmic scaling. Note that in Fig. part (b) we have a slope
of -10dB/dec (not -20dB/dec!), as we plot power (not amplitude) versus frequency.
Quantitatively pink noise depends on the device.

The simplest mathematical model for pink noise requires two parameters:
e P'yr: the noise floor's spectral power density, and
e fnc: the noise corner frequency where pink noise equals noise floor power density.

For typical operational amplifiers fnc is some 100Hz. For typical MOSFETS pink noise
becomes dominant over thermal noise below 100Hz [Hau99].

(a) A Pnoise ®) A (Pnoise/PO) /dB
. N _ o
1/f-Rauschleistung 30 T /1/f-RauschIe|styng |
\ (- 10\dB/dec) \ \
/1/f-Eckfrequenz 20 "**T**ﬂ ~
I I I I
therm. Rauschen —
/ \ - Eckfréquenz\\
» 0 ; 1 1 )
0 f 0,1 1 10  log(f/Hz)

Fig. 5.4.9.2: 1/f noise with (a) linear and (b) logarithmic scaling.

Modeling

P'yink(f) = P'Nr-fnc/ [

A possible noise floor related to resistors was
nF = 4kT.

The total pink noise-power in frequency band /7 ... f> becomes

a2

1

P s )= e | @df P fueln

Offset.

The offset drift e.g. of operational amplifiers versus time and temperature can be seen as low
frequency 1/f noise. Offset at frequency OHz is theoretically infinite in the 1/f model but
practically impossible, as it corresponds to an infinitely long period of time.
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5.4.9.3 E ., : Current Noise

Hold a needle into a smooth jet of water from a garden hose and observe the effect. The small
needle will strongly disrupt the water jet. Then try the same with a comb or a brush, they will
destroy the smooth water jet. The perturbations observed may give you a figure of how charged
doping atoms or grainy material disturbs a smooth current flow. For this reason, metal film
resistors cause less current noise than grainy carbon layer resistors, and poly crystalline silicon
causes more current noise than mono crystalline silicon.

Current noise models are strongly material dependent and are in many cases difficult to obtain.
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