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5 Signals, Noise and Signal-to-Noise Ratio 
5.1 Static Signal Conversion 
A signal with a bitwidth of NoB (number of bits) can represent NoL=2NOB levels. Consequently 
we can say that the representation of L-1 deltas (Δ) requires a number of  
 
NoB =ceil( ld(NoL) ) = ceil( logB(NoL)/logB(2) ) = ceil( ln(NoL)/ln(2) ) 
 
bits, where function ceil(x) computes the next higher integer value and ld stands for logarithmus 
dualis, which is hardly on any computer but can be easily computed as 
 
ld(x) = logB(x)/logB(2) = ln(x)/ln(2) . 
 
with any positive base B. The accuracy of the measurement should be a half Δ (= least 
significant bit, LSB). Consequently, the integral non-linearity (INL) should be  
 
INL ≤ 1 / 2NoB+1     INL% ≤ 100% / 2NoB+1 . 
 
 
Example: 
A DC voltmeter has a range of  R=0…200 Δ. How many bits do we need for the ADC, what 
INL in % do we require for INL  ≤ ½Δ? 
 
200 Δ => NoL = 201 % Number of Levels:  
NOB = ceil(ld(NoL)) = ceil(ln(201)/ln(2) = ceil(7.6) = 8  
 
INL% ≤ 100% / 28+1 = 0.2% 
 
 
Exercise: 
A DC voltmeter has a range of  R=0…2000 Δ. How many bits do we need for the ADC, what 
INL% do we require for INL  ≤ ½Δ? 
 
 
............................................................. 
 
............................................................. 
 
............................................................. 
 
............................................................. 
 
............................................................. 
 
 
Solution: 
A DC voltmeter has a range of  R=0…2000 Δ. How many bits do we need, what INL do we need when it should be  ≤ ½Δ? 
L=2001, NOB = ceil(ld(L)) bits = ceil(ln(2001)/ln(2)) bits = ceil(10.967) bits = 11 bits. 
INL ≤ 100% / 211+1 = 0.024% 
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5.2 Fundamentals on Handling Dynamic Signals 
5.2.1 Signal Power and Effective / rms Amplitude 
A signal is a physical representation of an information. It may come as voltage, current, power, 
temperature, displacement, as flag on an airport, as digital bit, etc. Except from some DC signals 
like temperature we typically handle waveforms like sound.  
 
We distinguish between amplitude, power and effective amplitude, also termed root-mean-
square (rms) value of a signal. Signal power is expressed as square of signal amplitude. 
Physically correct power is U2/R and I2R when U, I, and R represent voltage, current and 
resistor, respectively. But how to deal with other signals types like gas pressure, flags or digital 
signals? In signal processing the power of a signal is simply its squared amplitude. Average 
power is defined according to table 5.2.1. 
 
 
Tab. 5.2.1: A signal's average value and average power 
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Multimeters: RMS value of the alternating part only: 2 2
rms rms avx x x    

 
 
The average value of a signal is termed its DC value, statistically represented as x . With “signal 

power” we typically address the average power 2x  of a signal power )(2 tx . The effective or 
rms amplitude of a signal is the square root of its average power. 
 
 
Fig. 5.2.1: The effective or rms 
value Urms of a voltage U(t) is the 
DC voltage, that causes the same 
heating of R2=R1 as U(t). 

U R1 R2
Ux

Av=1

Buf
Urms

 
 
 

Warning: The frequently seen notation 
2

x  is not the average signal power but the square of its 

DC-value. Example: x(t)=A∙sin(ωt) has a DC value of 0x  and consequently 0
2
x , while 

its average power is 2/22 Ax  . 
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5.2.2 Effective Values of Some Particular Waveforms 
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Fig. 5.2.2-1 : Particular waveforms: (a) rectangular,   (b) sinusoidal,   (c) triangular. 
 
 
Fig. 5.2.2-1 shows (a) a rectangular, (b) a sinusoidal and (c) a triangular signal oscillating 
between the values A=R/2 and –A=-R/2 with range R=2A. Its total power for voltages at 1 
and its effective voltages are given by 
 

Rectangular:  
41

22
2 RA

urect    ↔  , 21
rect eff

A R
u    , (5. ) 

 

Sinusoidal: 
82

22
2
sin

RA
u    ↔     

82
sin,

RA
u eff  , (5. ) 

 

Triangular:  
123

22
2 RA

utri    ↔  
123

,

RA
u efftri   . (5. ) 

 
Different frequencies are uncorrelated, they add in power.  
 
 
Fig. 5.2.2-2:  
Area comparison of the three waveforms 

A

-A

t

u(t)

 
 
Exercises 
 
Exercise 1: Given is a rectangular waveform: 
urect(t) =A while 0 ≤ t-nT ≤ TH and urect(t) = -A while TH ≤ t-nT ≤ TH+TL, n=0, 1, 2, 3, ... 
 
Compute signal power: u2

rect(t) = ...................................... 
 
Average signal power: u2

rms =......................................... 
 
Effective amplitude: urms = .......................................... 
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Exercise 2: Given is a sinusoidal waveform: (Hint: sin2(x)= ½(1-cos(2x) ) 
usin(t) =Aꞏsin(ωt) 
 
Compute signal power: u2

sin(t) = ........................................ 
 
Average signal power: u2

sin,rms = ........................................ 
 
Effective amplitude: usin,rms = .......................................... 
 
 
Exercise 3: Given is a triangular waveform: 
utri(t) = (A/T)ꞏt   for  0 ≤ t-nꞏT ≤ T,   n = 0,1,2,3,… 
 
Compute signal power: u2

tri(t-nT) = ...................................... 
 
Average signal power: u2

tri,rms = ......................................... 
 
.............................................................. 
 
Effective amplitude:  utri,rms = ......................................... 
 
What is the difference to power and rms-amplitude of utri(t) if some triangles are positive and 
the others negative?    
 ................................................. 
 
Exercise 4:: Add an uoffset (f=0Hz) to DC-free, oscillating uosc (f>0Hz): 
 
.............................................................. 
 
Solutions: 
Exercise 1: Given is a rectangular waveform: 
urect(t) =A while 0 ≤ t-nꞏT ≤ TH and urect(t) = -A while TH ≤ t-nꞏT ≤ TH+TL, n=0, 1, 2, 3, ... 
Compute signal power: u2

rect(t) = A2  
Average signal power: u2

rms = A2 
Effective amplitude: urms = A 
 
Exercise 2: Given is a sinusoidal waveform: 
usin(t) =Aꞏsin(ωt) 
Compute signal power: u2

sin(t) = A2·sin2(ωt) = ½ A2·(1-cos(2ωt)) 
Average signal power: u2

sin,rms = ½ A2      as average over cos(x)=0. 
Effective amplitude: usin,rms = A/sqrt(2) 
 
Exercise 3: Given is a triangular waveform: 
utri(t) = (A/T)ꞏt   for  0 ≤ t-nꞏT ≤ T,   n = 0,1,2,3,… 
Compute signal power: u2

tri(t-nT) = (A/T)2· t2· 
Average signal power: u2

tri,rms = (1/T)[(A/T)2· t3/3]0T = (A/T)2·T3/3T = A2/3 
Effective amplitude: utri,rms = A/sqrt(3) 
What is the difference to power and rms-amplitude of utri(t) if some triangles are positive and the others negative?   no difference 

 

Exercise 4:  
222
oscoffsettotal uuu     →   2

,
2

, rmsoscoffsetrmstotal uuu     
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5.2.3 Summation of Correlated and Uncorrelated Signals 
 Correlated signals depend on each other 
 Uncorrelated signals do not depend on each other 

 
Correlated signals sum in amplitude:  Ncorrsum xxxxy  ...321,  (5. ) 

Uncorrelated signals sum in power:  22
3

2
2

2
1, ... Nuncorrsum xxxxy   (5. ) 

Different frequencies are always uncorrelated. (5. ) 
 
 
Exercise: 
We have N identical microphones recording sound. The recorded sound waves are added 
optimally for amplification What is the improvement in SNR compared to a single microphone? 
 
Fig. 5.x: 
M microphones 
receiving the same 
sound signal. 
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Solution to the exercise: 
Sound waves are correlated an sum in amplitude: Us,sum = N·Us => Ps = N2·Us2. 
 
The microphones noise in uncorrelated an sums in power: Pn,sum = N·Un2. 
 
SNR improves according to SNRsum=(N2·Us2)/(N·Un2)=N·Us2/·Un2. 
Consequently, the SNR improves by a factor N. This corresponds to factor sqrt(N) in voltages. 
 
This is basically the first example of oversampling with oversampling ratio OSR=N. 
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5.2.4 Bel and Decibel 
In honor of Graham Bell a factor 10 in signal power is termed a Bel, and 1 B = 10 dB, just as 
1 m = 10 dm or 1 liter = 10 dl. As power corresponds to square of amplitude (p=u2/R=i2R) and 
log(x2)=2log(x) we get  
 

Signal-Ratio = dB
i

i
dB

u

u
dB

p

p
B

p

p

1

2
10

1

2
10

1

2
10

1

2
10 log20log20log10log   . (2.6) 

 
where lg stands for log10. 
 
 
Exercise 1: 10dB is what factor in signal power? 10dB is what factor in effective voltage? 

.......................................................... 
 
 
Exercise 2: A factor 2 in amplitude corresponds to one bit. Compute it in dB! 

.......................................................... 
 
 
Exercise 3: to what factor in amplitude and power do 3.01 dB correspond? 

.......................................................... 
 
 
 
 
 
Exercise 1:: 10dB is what factor in signal power? 10dB is what factor in effective voltage? 
By definition 1 B = 10dB is a factor 10 in power → a factor sqrt(10)≈3.162 in voltage. 
 
Exercise 2: A factor 2 in amplitude corresponds to one bit. Compute it in dB! 
20dB·lg(2) ≈ 6.02 dB 
 
Exercise 3: to what factor in amplitude and power do 3.01 dB correspond? 
Amplitude: 10^(3.01dB/20dB)=sqrt(2), Power: 10^(3.01dB/10dB)= 2. 
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5.2.5 Signal Accuracy and Effective Number of Bits (ENoB) 
This chapter is to give an intuitive introduction in A/D and D/A converter design and selection 
for engineers. We shall show that from theoretical considerations an NoB bit quantizer can 
obtain a maximum theoretical signal-to-noise ratio or signal-to-(noise+distorition) ratio 
(SINAD). While SNR is defined for any input waveform, SINAD assumes a maximum 
amplitude sinusoidal input wave. In this case SNR=SINAD. 
 

SINADdB = dB
NoisePower

rSignalPowe
10lg 






  ≤ (lg(2NoB) + lg(1.5)) 10dB ≈ (NoBꞏ6.02 + 1.76) dB 

 
or the effective number of bits (using ENoB = NoB) as 
 

ENoB=
1.76

6.02
dBSINAD dB

dB


 for triangular eq(t), ENoB=(SNRdB+3.01dB)/6.02dB for rect. eq(t). 

 
where lg stand for log10. As a rule of thumb for nowadays ADCs compute 
 
SINADdB = (6 ENoB + 2) dB 
 

ENoB   
2

6
dBSINAD dB

dB


 

 
Note that the 10 dBꞏlg(3/2)=1.76dB accounts for the different waveforms: While the reference signal is assumed 
to be sinusoidal, the quantization noise is assumed to have a triangular shape. 
 
 
Exercises:  
 
What is the maximum SINADdB theoretically obtainable with a 16 bit ADC?  
 
Rule of thumb:  SINADdB = ........................................ 
 
Accurate: SINADdB = ........................................ 
 
 
In an advertisement a 16 bit ADC has a maximum SINAD of 93.5dB. What is its effective 
number of bits? 
 
Rule of thumb:  ENoB = .......................................... 
 
Accurate: ENoB = .......................................... 
 
Take data sheets of different vendors (e.g. Analog Devices, Burr Brown, Maxim, Linear 
technology, Texas Instruments,...) and check bit-width versus SNR for different ADCs. 
 
Solutions:  
Rule of thumb:  SINADdBca = 16·6dB + 2dB = 98 dB 
Accurate: SINADdB = 16·6.02 + 1.76)dB = 98.08dB 
Rule of thumb:  ENoBca = (93.5-2)dB /·6dB = 15.25 bits 
Accurate: ENoB = (93.5-1.76)dB·/ 6.02dB = 15.24 bits 
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5.2.6 Integration of Odd and Even f(x) in Symmetric Boundaries 
A function is called  
 
even  when   feven(x) = feven(-x),   e.g. cos(x), 
odd  when fodd(x) = -fodd(-x),   e.g.  sin(x). 
 
For integration in symmetric boundaries holds the rule 
 

dxxfdxxf
B

even

B

B

even  
 0

)(2)(  

 

0)( 


dxxf
B

B

odd  

 
 
Any function f(x) can be subdivided into an odd and an even part: 
 
feven(x)  = ½ (f(x) + f(-x)), e.g. cos(x) = (ejx + e-jx)/2 
 
fodd(x)  = ½ (f(x) - f(-x)), e.g. sin(x) = (ejx - e-jx)/2j. 
 
Get back the original function by  
 
f(x)  = feven(x) + fodd(x), e.g. ejx = cos(x) + jꞏsin(x) . 
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5.3 Budgeting Noise Sources 
In the following, we write 2

xE  as abbreviation of 2
,

2
rmsxx EE   with x standing for q, alias, clkj, 

nonlin, T&H, others… 
 
From the (ADC and DAC) customer point of view, we distinguish 2 kinds of noise sources: 
“Internal” noise sources, that are specific to a particular device, and “external” noise sources of 
the device, so that we have an influence on them through the design. If a noise source is internal 
or not, depends on the particular conversion device. While quantization noise is always internal 
and depends on the number of bits (NoB), Sample&Hold noises depends on the device. 
Examples: AD’s LTC2308 ADC provides no internal sampler, while TI’s ADC10 within 
MSP430 does, but we can do settings to control that sampler 
 
We will use Eint,rms and Eext,rms, abbreviated with Eint and Eext, respectively: 
 Eint: Build-in noise voltage coming unavoidable with a particular (ADC or DAC) device. 
 Eext: Noise voltage contributions that occur outside a considered (ADC or DAC) device. 
 Total noise power: 22

int
2

exttot EEE   

 
About the word “power” 
 “Power” is physically measured in Watts, while we measure it here in squared amplitudes, 

e.g. V2, A2, For SNR computations the results are the same. 
 True power computation would have to respect the DC component of a signal. A sinusoidal 

signal measured from 0…R would deliver an rms power of R2/8+R2/4, not R2/8. 
 
Some typical noises sources are 

1. Eq quantization noise 
2. Enonlin noise due to built-in non-linearity 
3. Eswitch noise from switching currents and/or voltages 
4. Eclkft clock feed-through: switching noise caused by digital  clock signal 
5. Eclkj noise due to clock jitter 
6. Ethermal thermal Johnson noise (resistors have spectral noise power of 4kTꞏB) 
7. Epink 1/f noise 
8. Ealias aliasing noise 
9. ET&H noise due to track-&-hold process 
10. Ecurrent noise caused by current flow, e.g. through doped semiconductors or grain 

  boundaries 
11. Eotin other built-in noise sources. 
12. Eotex other external noises sources like external resistors 
 
The total noise power is computed as sum of all noise contributions. Example: 
 

2 2 2 2 2 2 2
int q nonlin switch thermal pink otinE E E E E E E      , 2

int int, intrmsE E E   

 
2 2 2 2 2 2 2

&ext alias T H clkj clkft current otexE E E E E E E      ,  2
t t, tex ex rms exE E E   

 
22

int
2

exttot EEE  , 2 2
, inttot tot rms extE E E E    
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In the following, we will use a sinusoidal test signal with the maximum possible amplitude, so 
that SNR (Signal-to-Noise Ratio) and SINAD (Signal to Noise & Distortion ratio) are the same. 
 
Typically, we have a system accuracy goal given by the specifications: 
 

SNRtot = 
2 2 2

, ,

2 2 2 2 2
int int

Sin / 8S rms S rms

tot ext ext

U UusoidalSignalPower R

TotalNoisePower E E E E E
  

 
, 

 
with R being the peak-to-peak voltage range. Power data in dB cannot be added, so we have to 
compute absolute power data. There are several possibilities to translate SNRdB to SNR, which 
is a power-ratio factor: 
 

SNR 2( 1.76)10 3.0110 2 2
dB dBSNR SNR

ENoBdB dB     
 
With sinusoidal signal power R2/8, we calculate the available total noise power budget as 
 

,

2
2

10

/ 8

10
dB tottot SNR

dB

SignalPower R
E

SNR
   . 

 
With a vendor-given, device dependent SNRdB,int (or SINADdB,int) we get 
 

,int

2
2
int

10

/ 8

10
dBSNR

dB

R
E   .  

 
The remaining noise power budged "external" of our conversion device is 
 

2 2 2
intext totE E E   

, ,int

2 2

int 10 10

1 1 1 1

8 8
10 10

dB tot dBSNR SNR
tot dB dB

R R

SNR SNR

             

. 

 
 
 
Fig: 5.3 
Total noise-power 
budget 2

totE , its share 

from the inside the 
conversion device, 

2
intE , and the 

remaining, device-
"external" noise-
power budget, 2

extE . 

 
 
If this noise-power budget is assumed to be equi-distributed over K noise sources, we get (for 
example with xxx   {alias, clkj, T&H, otex}) 
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2

2 ext
xxx

E
E

K
                             

K

E
EE rmsext

xxxrmsxxx
,2

,   . 

 
 
Example: 
Given is a 2.7V technology. Required total accuracy is SNRtot,dB = 80 dB. Given by the vendor 
is SNRdB,int = 83 dB. What is the effective noise voltage budget Eext,rms available for the customer 
and what is the effective noise-voltage budget Exxx,rms for any of the 4 external noise sources? 
(The noise budget is to be distributed over the 4 noise sources with same power.) 
 
SNRtot = 810/8010/ 101010 ,  dBdBdBSNR dBtot  
 

2
,rmsSU  = R2 / 8 = (2.7V)2/8 = 0.911 V2  

 

2
extE  = 29

8

2

88

2

int

2
, 10556.4

102

1

8

)7.2(

102

1

10

1

8

11
V

VR

SNRSNR
U

tot
rmsS






















  

 

Eext,rms = 292 10556.4 VEext
  = 67.5μV    →   Exxx,rms = Eext,rms / 2 = 33.75μV  

 
In the following subsections we will compute the noise power of the different noises sources 
mentioned above. 
 
Exercise: 
Given is a 3.3V technology. Required total accuracy is SNRtot,dB=90dB. Given by the vendor is 
SNRint,dB=95dB. What is the total effective noise-voltage budget Eext,rms available for the 
customer and what is the effective noise-voltage budget Exxx,rms for any of the 5 external noise 
sources? (The noise budget is to be distributed over the 5 noise sources with same power.) 
 
SNRtot =  
 ......................................................... 
 

2
,rmsSU  =  

 ......................................................... 
 

2
extE  =  

 ......................................................... 
 
Eext,rms =  
 ......................................................... 
 
Exxx,rms =  
 ......................................................... 
 
 
Solution to the exercise above: 
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SNRtot = 910/9010/ 101010 ,  dBdBdBSNR dBtot ,     2
,rmsSU  = R2 / 8 = (3.3V)2/8 = 1.361 V2 ,   

2
extE  = 

2
2 10 2
, 9 9.5

int

1 1 (3.3 ) 1 1
9.308 10

8 10 10S rms
tot

V
U V

SNR SNR
          

  
 

Eext,rms = 2102 10806.6 VEext
  = 30.51μV    →   Exxx,rms = Eext,rms / 5  = 13.64μV  
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5.4 Computing Noise Power of the Different Noise Sources 
5.4.1 Quantization Noise Power of DAC Output Waveforms 

5.4.1.1 Best-Case SNR for Multi-Bit Quantization 

 
Fig. 5.4.1.1: 
 
(a) Multi-bit quantization 

of a signal Aꞏsin(ωt) 
with amplitude A>Δ. 
 
 
 
 
 

(b)  Quantization error 
eq(t) has a mostly 
triangular shape. 

0
0 t



2

3

t
0

d(t)
u(t)

eq(t) eq=u-d

(a)

(b)

/2

/2  
 
 
Quantization noise is a quantity that mainly depends on the smallest possible step, termed Δ, of 
an A/D or D/A converter, and it corresponds to numerical round-off noise. 
 
For a sufficiently busy signal with signal range Rs >> Δ, quantization error e(t) has a triangular 
shape over time axis with range Rq = Δ, as shown in Fig. 5.4.1.1(b). Consequently, 
 

2
2
, 12q triaE


    , ,

12
q tria rmsE


  

 
For a NoB binary input bits DAC with NoB ≥10 we use the approximation  
 

NoBNoB

RR

212



  

 
Quantizing s(t) = (R/2)ꞏsin(ωt), the best obtainable SNR respecting quantization noise only is 
 

2 2 2
2

2 2 2 2
,

/ 8 / 8 3
2

/12 / (2 12) 2
NoBrms

q NoB
q tria

S R R
SNR

E R
   

 
  

 

 , 10 lg 6.02 1.76q dB qSNR dB SNR NoB dB dB      

 
The factor 3/2 in SNRq corresponding to 1.76dB in SNRq,dB stems from the fact that reference 
signal s(t)=(R/2)ꞏsin(t) is sinusoidal and the quantization noise eq(t) is triangular. 
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5.4.1.2 Best-Case SNR for Single-Bit Quantization (NoB=1) 

Pulse-width modulation (PWM) and ΔΣ 
modulation are frequently used with single-
bit quantization. When the transferred signal 
range R is small compared to Δ, i.e. R << Δ, 
quantization noise can be assumed to be 
rectangular as illustrated in Fig. 5.4.1.2-1. 
Then effective power of quantization noise is 
 

2
2
, 4q rectE


       2

, , 2q rect rmsE


  


2


2

t
0

averaged analog signal
         s(t)

2-level quantized signal u(t)
off=

off+=

 

Fig. 5.4.1.2-1: Signal range R << Δ 
yields rectangular quantization noise 

 
so that  
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 , 10 lg 6.02 3.01q dB qSNR dB SNR NoB dB dB      

 
The factor 1/2 in SNRq,rect corresponding to -3.01dB in SNRq,rect,dB stems from the fact, that 
reference signal s(t)=(R/2)ꞏsin(t) is sinusoidal and the quantization noise eq(t) is rectangular. 
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When signal amplitude A is similar to rectangular single-bit quantization Δ : 
 
 
Fig 5.4.1.2-2:  
One-Bit quantizer. 
 
(a) signal u(t) 

obtained by 
averaging d(t). 
 
 
 
 
 
 

(b) Quantization 
noise obtained 
as difference 
eq(t)=d(t)-u(t). 

0
0 t



t
0

d(t)u(t)

eq(t)

(a)

(b)
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/2



  
 
To compute a PWM signal we observe one time interval T=TH+TL, where TH is the total high-
time during and TL the total low-time of the signal. We define urect(t) as 
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Using  
 

T

T

TT

T
D H

LH

H 


         D
T

TL 1 . 

 
we get signal s, which is the average of urect(t), as  
 

 Dos ff  
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Fig. 5.4.1.2-3: (a) Rectangular signal with average,  (b) quantization noise = signal – average. 
 
 
The quantization error is  
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The total quantization noise power is  
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with a maximum at D=0.5. 

10

0.25

0
0.5 D

(Eq,rect /)2 = D(1-D) = 0.25-s2

-0.5 0.50 s  

Fig. 5.4.1.2-4: Quantization noise power as 
function of duty cycle D. 

 
 
For ΔΣ modulators the total High- and Low- times consist of several disjointed bits and the 
integration interval T may not be so clearly to define. However, the result is the same. 
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5.4.2 Quantization Noise Power of an ADC Samples 

5.4.2.1 Multi-Bit Quantization with Sufficiently Busy Input Signal 

Let’s assume we sample a piece of music that takes 200s with a sampling frequency fS=50KHz. 
Then we have N=fSꞏ200s=107 samples and the same number of quantization errors ei=eq(ti), 
where ti=iꞏT=i/fS. Their quantization noise power is defined as  
 





N

i
iq e

N
E

1

22 1
. 

 
We now arrange the samples ei according to their size, ei, and form K groups of width h=Δ/K 
containing nj samples. The we can re-write the sum as 
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with weight function wj=nj/N and 
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1 . For h→0 this sum strives to  
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and the integral evaluates to  
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In summary 
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Fig. 5.4.2.1: Probability w(eq) is uniformly 
distributed over eq. I.e. any eq has the same 

probability to occur within 
interval -Δ/2 ... Δ/2. 
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Note that this is exactly the same result as for the triangular, time-continuous output waveform 
of the DAC. In fact, if we would order all the  ei by size they would form a triangle. 
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5.4.2.2 Single Bit (NoB=1) Toggles at Constant Input Signal 

This happens typically if only the least significant bit (LSB) oscillates. The signal is computed 
by averaging the in put samples si=s(ti). We have a total number of N samples, with nL of them 
having the value si=0 and nH of them the value sj=Δ. Their average value (here assumed to be 
more or less constant with respect to the sampling rate) is computed as averaging value: 
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Using  
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delivers the average signal as 
 

 Dts )( . 
 
Consequently, we have nL errors of size eq,i=si-s(t) = -DΔ and nH errors of size 
eq,j=sj-s(t) = (1-D)Δ. The total noise power is then 
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The final result, 
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4
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qE  at 

2

1
D . 

 
is essentially the same as we had for the 2-level DAC in the time-continuous regime. In fact, 
we could reorder our eq,i to form the sampling of a pulse-width modulated wave. 
 
Fig. 5.4.2.2: 

(a) Samples si and 
their average value 
s(t). 

(b) Quantization errors 
computed from 
eq,i=si-s(t). 

(c) Probability of 
quantization errors 
eq,i to occur. 
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5.4.3 Quantization Noise Power in the Frequency-Domain  

5.4.3.1 Using Shape Functions to Model the Frequency Domain View. 

We now know from time-domain considerations that the total quantization noise power of a 
multi-bit quantization of a sufficiently busy signal s(t) with amplitude  A >> Δ  delivers the 
quantization-noise power 
 

12

2
2 
qE  

 
with Δ being the least significant bit. We can use eq(t) or eq,i , i=1...N, to compute the Fourier 
transformed of this functions. As the Fourier transformation must be done for a particular signal, 
we construct a general approximation that we can transform. Respecting that different 
frequencies are principally uncorrelated we have to add or integrate them in power: 
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where the abbreviation 2

qE  stands for  
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Considering spectral quantization noise the range f=0...fs/2, with fS being the sampling 
frequency, we can write 
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with shape function w(f) having the property 
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In the time-discrete domain we use a sampling frequency fS and the relative frequency 
Sf

f
F 

. Consequently, dF/df = 1/fs  yields  df = fS dF and the shape integral translates to 
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with  F1=f1/fS ,  F2=f2/fS  and  )/()( SS ffwfFW  . 
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5.4.3.2 Quantization Noise at Nyquist Sampling : Bandwidth fB = ½ fS. 

Given is sampling frequency fS and consequently  
Absolute bandwidth fB = fS/2 , 
Relative bandwidth  FB = fB/fS =½ . 
 
If the signal s(t) is sufficiently busy with respect to fS and the quantization process as the same 
probability to hit any value in the range –Δ/2...Δ/2, then the shape function for a quantization 
error is “white”, i.e. 
 
 
Table 5.4.3.2: Shape functions with unit area at Nyquist sampling: fB = ½ fS 

Quantity over real frequency axis f  over relative frequency axis F  
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Integrating the total noise power in the baseband 0…fB or over 0…FB  obtains the total noise 
power of the sampler. As this power cannot depend of the kind of integration the result over 
frequency must be the same as obtained n time-domain, namely 2

qE . 
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5.4.3.3 Quantization Noise Reduction by Simple Oversampling 

Sampling frequency fS is now increased to an oversampling ratio of 
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with OSR > 1. Note that Nyquist sampling corresponds to OSR = 1. Consequently we have 
 
 
Table 5.4.3.3: Shape functions with unit area at over-sampling: fB = ½ fS/OSR 

over real frequency f  over relative frequency F  
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Integrating the total noise power in the baseband 0…fB or 0…FB delivers the total noise power 
in the baseband. 
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Consequently, by oversampling with ratio OSR  
the noise power within the baseband is reduced with 1/OSR, 

the noise amplitude within the baseband is reduced with 1/ OSR . 
 
This noise reduction assumes an ideal lowpass, i.e. |HLP(f)|={1 when f≤fB, 0 otherwise}. With a 
non-ideal lowpass we obtain 
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Fig. 5.4.3.3:  
White Quantization 
Noise  (0th Order Noise 
Shaping) 
 
 
(a) no oversampling 

 
 
 
 
 
 
 
 

(b) Using an OSR=4 and 
an ideal lowpass at 
fB. 
 
 
 
 

(c) Using an OSR=9 and 
an ideal lowpass at 
fB. 
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Exercises: 
The noise power in your signal has to be reduced by simple oversampling an subsequent 
filtering with an ideal lowpass with cut-off frequency fB. Compute the required oversampling 
ratios: 
 
Reduction of noise power in the baseband by a factor 10: increase OSR by ............ 
 
Reduction of noise amplitude by a factor 10: increase OSR by .................... 
 
Improvement of SNR by one bit: increase OSR by ............................ 
 
Improvement of SNR by NoB bits: increase OSR by ........................... 
 
Improvement of SNR by X dB: increase OSR by ............................. 
 
 
Solutions: 
Reduction of noise power in the baseband by a factor 10: increase OSR by factor 10 
Reduction of noise amplitude by a factor 10: increase OSR by   factor 102=100 
Improvement of SNR by one bit: increase OSR by  22 = 4 (1 bit is amplitude noise reduction by factor 2) 
Improvement of SNR by NoB bits: increase OSR by 22NOB = 4NOB (NoB bits is 2NoB amplitude noise reduction) 
Improvement of SNR by X dB: increase OSR by  1st way: factor 10X/10dB according to definition of dB  
 2nd way: factor 4X/6.02dB replacing above NoB by NoB=X/6.02.  
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5.4.3.4 Quantization Noise Reduction by Noise Shaping and Filtering 

X Y
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M-th order
Integrator ADC

kAD

DAC
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Eq
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E
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FB
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Fig. 5.4.3.4: (a) Feedback loop,  (b) ΔΣ Modulator, (c) shaped noise power Eq,rms(F)  
 
 
A ΔΣ modulator consists of an integrator and a quantizer in the forward network and a feedback 
network which is constant over frequency as shown in the figure above. As the quantizer works 
time-discrete we use the time discrete integrator model, 1/(1-z-1). 
 
 

 

Screen shot from oscilloscope of 2nd order  modulator. Yellow: input signal to  ADC. 
Green: its 9-level modulator's output. Blue: lowpass filtered (=demodulated) green curve. 
Red: blue curve  modulated with 9-level quantizer. 
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The screen shot above shows: 

1. Yellow, X in the  schematics above: Approximately rectangular analog input voltage to a 
2nd order modulator (voltage CP_in_P of DA2 board of course PRED). 

2. Green, Y in the  schematics above: Modulator's output, i.e. the output of the 9-level 
quantizer 'jumping' fast around the yellow input signal. (To make this digital output visible 
as analog waveform it was measured at the output Xk of the DAC in the feedback branch as 
voltage DAC3out of DA2 board.) 

3. Blue, (not in the  schematics above): This is the demodulated signal (green) Y. 
Demodulation is nothing else than lowpass filtering. The blue curve is the output of the  
ADC. (This originally digital signal and was made visible with a 256-level R2R DAC as 
voltage DAC1out of DA2 board.) 

4. Red, (not in the  schematics above): This is the re-modulated blue ADC output. This was 
done by a 1st order digital-to-digital  modulator with a 9-level quantizer. (This originally 
digital signal and was made visible here a 9-level DAC as voltage DAC2out of DA2 board.) 

 
 
Illustrating the Power of Oversampling and  Modulation  

Table 5.4.3.4 below illustrates the power of  modulation computing the quantization noise 
power reduction in the baseband 0...fB. Oversampling ratio is OSR=fs/2ꞏfB with sampling 
frequency fS. It is assumed that we have quantization noise only and ideal lowpass filters to 
remove frequencies > fB.  
 
Example 1: We want to lower quantization noise power in the baseband by 60dB, 
corresponding to a factor K=1000 in rms voltage or some 10 bits. Obtaining that by simple 
oversampling requires to increase sampling frequency fS by a factor K2=106. An ideal 1st order 
 modulator could obtain the same SNR improvement with increasing fS by a factor 126 and 
an ideal 2nd order modulator could obtain that with an OSR of 27. 
 
Example 2: We have music in the baseband 0...25KHz sampled with fS=50KHz. Noise power 
reduction of 60dB in the baseband obtained by plain oversampling requires to increase fS by a 
factor K2=106 to fs0=50GHz. An ideal 1st order  modulator could obtain the same SNR 
improvement with increasing fS by a factor 126 to fs1=6.3MHz. An ideal 2nd order modulator 
could obtain that with an OSR of 27 and consequently fs2=1.35MHz. 
 
 
Table 5.4.3.4: Theoretically obtainable SNR improvements. Taken from [Leme, PhD...] 

SNRdB 20 dB 40 dB 60 dB 80 dB 100 dB 
OSR(order =2) 5 11 27 67 168 
OSR(order =1) 6 28 126 578 2657 
OSR(order=0) 100 10322 1,05E6 106E6 1,08E10 
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Modulator Overloading  

The output of the 1st order  modulator shown in the lower (red) curve of the screen shot 
above has no jump over 2 's, although the 9-level quantizer would make such jumps possible. 
This output could be realized with a 2-level quantizer with no further problems. 
 
Observe the output of the 2nd order A/D modulator, i.e. the green curve in the screen shot 
above. While the output signal is more or less constant we find jumps over 2 's. This is because 
a 2nd order modulator required 2-jumps. A 2-level quantizer offering -jumps only is said to 
be overloaded. But it is still stable. 
 
Increasing the order of a  modulator pushes more noise to higher frequencies. This can be 
observed by jumps over several 's. If the modulator needs to jump over more deltas than the 
quantizer can realize we call this overloading. A 2nd order modulator is still stable with a 1-bit 
(=2-level) quantizer and delivers relatively good results. Higher order modulators become 
unstable and loose accuracy in case of overloading. 
 
 
ΔΣ Noise Power Reduction in Baseband 0…fB : 

Key message: The quantization noise in the baseband 0...fB with OSR=fS/2fB, and Korder being a 
constant, we get 
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The noise power within baseband f=0…fB is reduced proportional 1/OSR2order+1. 
 
 
Predication 1, using M = ΔΣ modulator’s order (see proof 1 below: 
A ΔΣ modulator with M-th order integrator has a constant signal transfer function (namely 
STF=1/kAD) and a noise power spectrum shaped according to 2CM∙sin2order(πF) over relative 
frequency F=f/fS, with Corder being a constant. Figure 5.4.3.4(c) illustrates first order shaping of 
effective error amplitudes Eq,rms. 
 
Predication 2 (see proof 2 below): 
The noise shaping can be quantified as 
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Predication 3 (see proof 3 below): 

The total quantization noise power 2
qE  and amplitude 2

, qrmsq EE  , that is generated by the 

quantizer. Its part within the based f=0…fB  (corresponding to F=0…FB) is reduced to:  
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Application to 1st  Order ΔΣ Modulator: M=1 

C1=2 and hence 
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,
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and hence 
 

5.1,
2
,,,

1

23

2

OSR
EEE rmsqBqrmsBq


  

 
Note  

(1) This is the quantization noise power in the baseband f=0...fB. A non-ideal lowpass will 
allow more noise power to pass. 

(2) The output of a 1st order ΔΣ modulator performs jumps over one Δ. Therefore, a single-
bit output is well. 

 
 
Application to 2nd  Order ΔΣ Modulator: M=2 

C2=8/3 and hence 
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and hence 
 

5.2
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215

8

OSR
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




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Note  

(1) This is the quantization noise power in the baseband f=0...fB. A non-ideal lowpass will 
allow more noise power to pass. 

(2) The output of a 2nd order ΔΣ modulator performs also jumps over 2Δ. Therefore, a single-
bit output is called overloaded but still works stable and surprisingly well. 

 
 
Application to Higher Order ΔΣ Modulator: M≥3,  

Higher order modulators are difficult to construct and generate considerable high-frequency 
noises power with jumps over several Δ’s. Particularly when the output is overloaded severe 
stability problems must be solved [Norsworthy,Schreier,Temes: “ΔΣ Data Converters”]. 
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Example: 

We want 1 bit more accuracy for our oversampling ADC. It is demodulated by an ideal lowpass 
with cut-off frequency fB. Instead of improving the quantizer we increase the OSR. By how 
much must the OSR be increased for Mth order (M=0,1,2) ΔΣ modulation? (We assume that 
there are no other noise sources than quantization noise available.) 
 
1 bit is a factor 2 in voltage and consequently a factor 4 in power. 
 
0th order modulation (M=0, is no modulation and no noise shaping, could be PWM): 

OSR

1

4

1
    =>   increase OSR by factor 4. 

 
1st order ΔΣ modulator (M=1): 

3

1

4

1

OSR
    =>   increase OSR by factor 59.143  . 

 
2nd order ΔΣ modulator (M=2): 

5

1

4

1

OSR
    =>   increase OSR by factor 32.145  . 

 
 
Exercise 1: 

We want 20dB more accuracy for our oversampling ADC. It is demodulated by an ideal lowpass 
with cut-off frequency fB. Instead of improving the quantizer we increase the OSR. By how 
much must the OSR be increased for Mth order (M=0,1,2) ΔΣ modulation? (Assume that there 
are no other noise sources than quantization noise.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exercise 2: 

Prove with Matlab that 1)(sin2
2/1

0

2 
F

M
M dFFC  , when 

 


M

k
M k

k
C

1 12

2
. 
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Solution to Exercise 1 (M = ΔΣ modulator’s order): 

We want 20dB more accuracy for our oversampling ADC. It is demodulated by an ideal lowpass 
with cut-off frequency fB. Instead of improving the quantizer we increase the OSR. By how 
much must the OSR be increased for Mth order (M=0,1,2) ΔΣ modulation? (Assume that there 
are no other noise sources than quantization noise available.) 
 
20dB is – by definition – a factor 100 in power. 
 
 
0th order modulation (M=0, is no noise shaping): 

OSR

1

100

1
    =>   increase OSR by factor 100. 

 
 
1st order ΔΣ modulator (M=1): 

3

1

100

1

OSR
    =>   increase OSR by factor 64.41003  . 

 
 
2nd order ΔΣ modulator (M=2): 

5

1

100

1

OSR
    =>   increase OSR by factor 51.21005  . 

 
 
 
Solution to Exercise 2: 

% Prove that integral(2CM*sin(pi*F)^2M) == 1 
h=1e-5; F=0:h:0.5; Mmax=14; 
W=sin(pi*F); W2=W.*W;  
W2M=W2; 
C(1)=(2/1);               % CM 
I(1)=2*C(1)*trapz(W2M)*h; % Integral using trapezoidal rule 
plot(F,W2M); hold on, grid on; 
for M=2:Mmax; 
   C(M)=C(M-1)*(2*M)/(2*M-1); W2M=W2M.*W2; 
   I(M)=2*C(M)*trapz(W2M)*h; 
   plot(F,W2M); 
end; hold off;  
C, I % plot CM and I(ntegral) 

 
 



M. Schubert  A/D and D/A Conversion OTH Regensburg 

 - 5.29 -

Proof 1: Noise amplitude shaping according to sinM(πF) 
Fig. part (a) above illustrates the typical feedback loop with signal and noise transfer functions 
 

kkA

A

X

Y
STF kA 1
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kAE

Y
NTF . 

 
Applying that to the Delta-Sigma modulator in Fig. part (b) delivers 
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1 |)(|  


 

zAkzAkE

Y
NTF
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zAk

DAq

DA , 

 
with kDA being the amplification of the DAC (e.g. in V/bit). Using the ADC’s amplification kAD 
(e.g. in bit/V) the forward network is given by 
 

M
AD

z

k
zA

)1(
)(

1
  

 
where 1/(1-z-1) models the time-discrete integrator. Consequently the NTF can be modeled as 
 

DAAD

M
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zAk
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)1(
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1 1
|)(|


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Using DAADADA kkk   (which is a dimensionless constant) delivers 
 

 M
ADA

M

ADA

M
zAk zz
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z
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Using FjfTjTj eeez  22   delivers 
 

    )(sin2
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2/12/1
2/

|)(| F
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





   .  

 
As we are only interested in amplitudes of noise shaping only we use a constant KM to write  
 

)(sin0 FKNTF M
M

F    . 
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Proof 2: Noise shaping according to sin2M(πF) 
The compute the constant factor KM in the formula above, we recall to mind that the total 
quantization noise power 2

qE  is given by time domain considerations. So we write 

 
)()( 22

, FWEFE qq    

 
with shape function WΔΣ(F)=2CMꞏsin2M(πF), where constant CM was selected such, that 
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It can be shown that [Bronstein Semendjajew] 
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Proof 3: Noise power reduction is according to 1/OSR2M+1  
As ΔΣ modulator is based on oversampling with OSR=fS/(2fB) > 1, the noise power in the 
baseband F=0...FB (corresponding to real frequencies f=0...fB) is given by 
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As the integral over sin2M for any FB is difficult to evaluate we assume for sufficiently large 
OSR=1/2FB the approximation sin(x)≈x for x<<1. In this case the integral above becomes 
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The substitution  FB=1/(2ꞏOSR) delivers the desired dependency on the OSR: 
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5.4.4 Enonlin : Noise Due to Non-Linearity 
Non-linearity are errors that do not occur randomly but always for certain input voltages. Their 
effect is visible in parameters like THD (total harmonic distortion, German: Klirrfaktor), SFDR 
(spurious free dynamic range), INL and DNL (integral and differential non-linearity, 
respectively). 
 
Non-linearity is a noise source that typically cannot be improved by the customer of an A/D or 
D/A converter and should therefore be included in the data-sheets best-case SNR of the ADC 
or DAC. 
 
Best-case models: 
 
DAC:   UDAC,out = ΔDAꞏNDAC,in ADC:   NADC,out = round(UADC,in / ΔAD) 
 
Best-case models with offset voltages: 
 
DAC:   UDAC,out = ΔDAꞏNDAC,in + Uoff,DA ADC:   NADC,out = round(UADC,in -Uoff,AD) / ΔAD)  
 
Examples for including non-linearity: 
 
ADC:    ...3

,3
2

,2,10,  inADCinADCinADCoutADC UUUroundN   

 
DAC:   ...3

,3
2

,2,10,  inDACinDACinDACoutDAC NNNU  , 

 
Furthermore we can introduce missing codes, e.g. by 
 
if(N  316 and N  512) then N=512 end if; 
 
 
Non-linearities apper as harmonic distortion. The noise generated by harmonics is measured as 
total harmonic distortion (THD) as defined in chapter 2 as 
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 1010 logdBTHD dB THD   

 
whereas X is an amplitude like voltage or current and ETHD is the effective (rms) voltage of the 
harmonics, so we could also write ETHD,rms. 
 
PS: In audio applications we frequently find the definition 
 

THDTHD audio  %100%  . 
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5.4.5 Eotin : Other Internal Noise Sources 
There are several other internal noises sources as Johnson noise of resistors or 1/f (=pink) noise 
of FETs etc. However, it is up to the manufacturer to measure these noise sources and respect 
them in the best-case SNR of the ADC or DAC in the data sheet. 
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5.4.6 Ealias : Alias Noise 
External Noise. This is a noise that can typically be attenuated by external lowpass filters. 
 
In the analog domain we use indices A and B, for attenuation and bandwidth frequencies, in the 
digital domain we use indices C and D for cutoff and damping frequencies, respectively. 
 
5.4.6.1 Computing Alias Frequencies 

Assuming a real sampling frequency fS we define the relative frequency F=f/fS. Due to the 
theorems of Nyquist and Shannon the maximum frequency that can be represented is 
 
f = 0 ... ½ fS    F = 0... ½  
 
If we sample frequencies higher than ½fs does not obtain lowpass filtering but causes aliasing, 
i.e. the sampled frequency is observed at  
 
falias = | f – fS round(f/fS) |   Falias = | F – round(F) |. 
 
This might yield negative frequencies corresponding to a phase shift. The amplitudes of original 
and alias signals are the same. 
 
 
Exercise: 

A typical sampling frequency for telephones is 8 KHz. Note at what alias frequencies the 
following frequencies of the original voice will appear:  
 
Original fre-
quency / KHz 

→ Alias frequency / KHz 

0.5 →  

2 →  

3.5 →  

4.5 →  

9 →  

13 →  

22 →  

 
Solution: 

A typical telephone sampling frequency is 8KHz. Note on what alias frequencies the following frequencies of the original voice will appear:  
Original fre-
quency / KHz 

→ Alias frequency / KHz 

0.5 → |0.5-0| = 0.5 
2 → |2-0| = 2 
3.5 → |3.5-0| = 3.5 
4.5 → |4.5-8| = 3.5 
9 → |9-8| = 1 
13 → |13-2·8| = 3 
22 → |22-3·8| = 2 
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5.4.6.2 Required Anti-Alias Attenuation 

It is clear that these alias frequencies are perceived as noise and have to be removed before 
sampling. When we want to suppress aliasing noise by X or XdB dB, then the anti-aliasing 
lowpass has to this attenuation at the fs/2. 
 
Next we check for our aliasing-noise-power budget 2

max,aliasE  and compare it to the maximum 

possible power of a sinusoidal signal swinging in the range R, which has the power R2 / 8. If 
this signal is subject to aliasing its power has to be attenuated to  
 

2

2
,max

/ 8

alias

R
X

E
   

2

2
,max ,max

/ 8 / 8
10 lg 20 lgdB

alias alias

R R
X dB dB

E E

   
         

   
 

 
 
5.4.6.3 Required Order of Anti-Aliasing Filters 

Bandwidth fB denotes the filter’s pass-band. 
Stop-band attenuation X is guaranteed for f ≥ fA  
and  XdB=20log10(X).  
 
Assume equal amplitudes at the filter’s input. 
At the filter’s output UB is the pass-band 
amplitude and UA the attenuated stop-band 
amplitude. We should get  UA  XUB. 

lH(jf)l / dB

0

-XdB
log ffAfB  

Fig. 5.4.6.3: lowpass asymptotes. 
 
 
Abbreviating log10 with lg we can write the required filter order  
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With function ceil for rounding up the minimum filter order is         




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f
dB

X
ceilN
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Example: 

XdB = 60dB,  fB=2KHz,  fA = 4 KHz. Compute the required filter order N: 
N  ceil(60dB/(20dB·lg(4Khz/2KHz)))) = ceil(9,965) = 10. 
 
 
Exercise 1: 

XdB = 60dB,  fB=3KHz,  fA = 4 KHz. Compute the required filter order N: 
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.............................................................. 
 
 
Exercise 2: 

XdB = 60dB,  fB=3.7KHz, Nyquist sampling, fS = 8 KHz. Compute the required filter order N: 
 
 
.............................................................. 
 
 
Exercise 3: Given is a 8-bit ADC. Aliasing noise power must not exceed the quantization noise 
power of a half LSB. What is the required attenuation of aliasing frequencies? 
 
 
.............................................................. 
 
 
Practical Comment: If anti-aliasing filtering is necessary, a Butterworth filter is appropriate. 
It has a flat baseband transfer function and –3dB attenuation in the asymptote’s kink at fB, 
independently from filter order N. 

Butterworth lowpass transfer function: 
N

B

BW
ff

jfH
2)/(1

1
|)(|


  . 

 
 
Solution to exercise 1: XdB = -60dB,  fB=2KHz,  fA = 8 KHz. Compute the required filter order N. 

N  ceil(60dB/(20dB∙lg(4Khz/3KHz)))) = ceil(24.01)  →   N = 24. 

 
Solution to exercise 2: XdB = 60dB,  fB=3.7KHz,  fS = 8 KHz. Compute the required filter order N: 

N  ceil(60dB/(20dB∙lg(½∙8Khz/3.7KHz)))) = ceil(88.6)  →   N = 89. 

 
Solution to exercise 3: Given is a 8-bit ADC. Aliasing noise power must not exceed the quantization noise power of a half LSB. What is the 
required attenuation of aliasing frequencies? 
Required attenuation: XdB = -(9 x 6.02 + 1,76)dB = -55.94 dB 
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5.4.6.4 Matching Analog Anti-Alias and Digital Lowpass Filters 

fC fs/2 fsfD fn1f'n

aliasing
digital lowpass

digital lowpass

lHfilterl / dB

fs+fDfs-fC fs+fC

0

-XdB
ffB fA=

fs-fD

fn2

analog anti-aliasing filter

 

Fig. 5.4.6.4-1: Necessity for an analog anti-aliasing filter: Guarantee sufficient attenuation at 
fA=fS-fD to suppress aliasing, e.g. from fn to f'n. 

 
 
Today we have a strong tendency to replace analog circuitry by digital circuitry if possible. The 
figure above illustrates how to relax analog anti-aliasing filters by oversampling and subsequent 
digital filtering. Frequencies that alias into a range suppressed by the digital filter may pass the 
analog filter. If the digital filter reaches its attenuation at fD, then the analog filter has to suppress 
frequencies in the range |nꞏfS ± fD| with n being a positive integer. For large OSR=fs/2fB analog 
anti-aliasing filtering can often completely be avoided. This is shifting lowpass filtering from 
the analog to the digital domain. This is typical for ΔΣ ADCs, so that they can be identified by 
having the lowpasses after instead before the sampler. 
 
Note: In many systems – particularly microsystems – there is hardly space for anti-aliasing filters. Techniques 
based on oversampling (such as  ADCs) use high sampling rates to relax the demands of analog anti-aliasing 
filters or even avoid them completely. 
 
 
Exercise 4: Situation sketched in Fig. 3.1.4(a): An ADC feeds a telecommunication line, 
required XdB=56dB, Nyquist sampling, fS=8KHz, baseband edge fB=3.4KHz. What is the 
required order of the analog anti-aliasing filter? 
 
 
.............................................................. 
 
 
.............................................................. 
 
 
.............................................................. 
 
 
.............................................................. 
 
 
Solution to exercise 4: 
Attenuation must be replaced at fs/2, therefore fA=fs/2: 
 
N = ceil(XdB/20dB·lg(½·fs/fB) = ceil(56dB/(20dB·lg(4KHz/3.4KHZ) = ceil(39.7) = 40 
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fC fs/2 fsfD fn1f'n

aliasing
digital lowpass

digital lowpass

lHfilterl / dB

fs+fDfs-fC fs+fC

0

ffB fA=

fs-fD

fn2

analog anti-aliasing filter

-XdB

(a)

(b)

fB fs
fA fn1f'n

aliasinganalog anti-
aliasing filter

lHfilterl / dB

0

-XdB
f

fs/2

2fs
fn2 fn3 fn4

 

Fig. 5.4.6.4-2: Demands for an analog anti-aliasing filter: Guarantee sufficient attenuation at 
fA=fS-fD to suppress aliasing signals e.g. from fnx to f'n. 

 
 
Exercise 5: Situation sketched in Fig. 5.4.6.4-2(b) above: The bandwidth available for the 
telecommunication customer is 3.4KHz and is achieved by a digital filter: Cutoff frequency 
fC=3.4KHz, required damping  DdB=XdB=89dB to be reached at  fD=4KHz, sampling frequency 
fS= 500KHz. The analog anti-aliasing filter’s bandwidth is set to fB=16KHz. (It has to be 
> 3.4KHz but should not attenuate this frequency). What is the required order of the analog 
anti-aliasing filter? 
 
Bandwidth of the analog anti-aliasing lowpass: 
 
fB =  
 .......................................................... 
 
Attenuation frequency of the analog lowpass: 
 
fA =  
 .......................................................... 
 
Required order of the analog anti-aliasing lowpass:  
 
N =  
 .......................................................... 
 
Solution to exercise 5: 
Bandwidth of the analog anti-aliasing lowpass: fB = 16KHz (given above) 
Attenuation frequency of the analog lowpass: fA = fS-fD = (500–4)KHz = 496KHz 
Required order of the analog anti-aliasing lowpass:  
N = ceil(XdB/(20lg(fA/fB)) = ceil(89dB/(20lg((500-4)KHz/16KHz)) = ceil(2,98) = 3  
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5.4.7 Eclkj : Noise Caused by Clock Jitter 
If the custormer can control clock jitter – also called dither or phase noise – depends on the 
particular device and/or situation. (Example: max2880: 0.25...12.4 GHz, 0.14ps rms jitter.)  
See also: https://www.maximintegrated.com/en/app-notes/index.mvp/id/3359 and  

 
We assume a constant signal slope s'(t)= s . Furthermore a Gaussian distributed sampling-timing 
failure   with standard deviation σ. Then we get an error  se )(  with a Gaussian probability 
distribution having standard deviation σ. This delivers 
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The Total power is consequently given by 
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The result is surprisingly simple:  22

, )( sE rmsclkj    (5.4.7-1) 

 
 sE rmsclkj ,   (5.4.7-2) 

 
 
From a very simple linear point of view this 
model makes sense as illustrated in 
Fig. 5.4.7-1. However, this is a very rough 
approximation and literature offers 
significantly more sophisticated jitter models, 
e.g. [1] - [4]. 

s

s



Eclkj,rms

time  

Fig. 5.4.7-1: sE rmsclkj ,  as linear view. 

 
 
Using (5.4.7-2) we can make different assumptions on 2s . With carrier frequency ωc and 
sampling time jitter 2  being constants we assume in Fig. 5.4.7.-2(a) that sampling the in-
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phase part I(t) cos(ωct) of a QAM64-signal in its extrema delivers constant signal slopes 2s  from 
the quadrature-phase part Q(t) cos(ωct). In this case we get 
 
 22 )( cQs    (5.4.7-3) 

 
In the Fig part(b) we assume sampling of signal a s(t)=A sin(ωct) at random time points yielding 
an average signal slope at samplint time of 
 

 22 )2/( cAs    (5.4.7-4) 

 
Although these models might be extremely rough approximations, they give us a rough figure 
of what results we might expect. 
 
 

 
Fig. 5.4.7-2:   (a) s  (red) ist constant in sampling points,   (b) We getverage s  

 
 
Bettor models are given in the references below, such as spectral noise power density 
 

2

32

)(
f

f
fL osccc
  (5.4.7-5) 

 
with frequency offset f from oscillator frequency fosc and cycle-to-cycle jitter ϭcc. It is measured 
in dBc/Hz, with dBc being dB with respect to carrier at fosc. 
 
 
Some References Concerning Clock Jitter: 
[1] Phase noise, Wikipedia, Available 21.06.2017: http://en.wikipedia.org/wiki/Phase_noise#Definitions. 
[2] Phasenrauschen, Wikipedia, Available 21.06.2017: https://de.wikipedia.org/wiki/Phasenrauschen  
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[3] Maxim Integrated, Applicaton Note 3359, Clock (CLK) Jitter and Phase Noise Conversion, Available 
17.06.2017: https://www.maximintegrated.com/en/app-notes/index.mvp/id/3359.  

[4] Maxim Integrated, 250MHz to 12.4GHz, High-Performance, Fractional/Integer-N PLL, 0.14 ps integrated 
RMS jitter, vailable 17.06.2017:  https://datasheets.maximintegrated.com/en/ds/MAX2880.pdf. 

[5] Analog Devices, Brad Brannon: Sampled Systems and the Effects of Clock Phase Noise and Jitter, 
Application Note AN-756, Available 21.06.2017: http://www.analog.com/media/en/technical-
documentation/application-notes/AN-756.pdf. 

[6] Google search: Figures about clock jitter: https://www.google.de/search?q=jitter+noise&client=firefox-
b&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwivjvKhoMTUAhVIZ1AKHaqpB8EQsAQIPw
&biw=1645&bih=946.  

 
 
Exercise 1:  
We assume sampling of the sinusoidal curve Aꞏsin(ωct) at random time points. Given constants 
are standard deviation A, ϭ and ωc. and VCC. Compute Eclkj,rms. 
 

Combining (5.4.7-2) sE rmsclkj ,  with (5.4.7-4) 22 )2/( cAs   delivers  

............................................................. 
 
Eclkj,rms  = ϭ·Aωc/sqrt(2) = 1ps·(3V·2π·2.4MHz/sqrt(2) = 31.98µV 
............................................................. 
 
 
Compute maximum SNR and SNRdB achievable with A=3V, ϭ=1ps and fc=2.4MHz, VCC.=3V. 
 
 
SNR = (3V)2/8 / (31.98μV)2 = 1.099·109    SNRdB = 90.41 dB 
............................................................. 
 
SNRdB = 10·log10(SNR) = 90.41 dB 
............................................................. 
 
 
Exercise 2a: Fill the gaps:  
A QAM64 signal is given by   SQAM(t) = I(t)ꞏcos(ωct) + Q(t)ꞏsin(ωct) with 
ωc   =2πꞏfc = 2πꞏ2.4GHz RF carrier frequency 
I(t)   = mꞏΔ/2, m=±1, ±3,.… ±M In-phase signal, coming as I-phase envelope, 
Q(t)  = nꞏΔ/2, n =±1, ±3,.… ±N Quadrature-phase signal, coming as Q-phase envelope. 
 
It allows to represent ...... different values at a time by .......  different I- 
 
and .......  different Q-values:  Q/(Δ/2), I/(Δ/2) =  .......................... 
 
This corresponds to ............. parallel bits. 
 
 
Exercise 2b:  
A QAM signal is given by   SQAM(t) = I(t)ꞏcos(ωct) + Q(t)ꞏsin(ωct) with 
ωc   =2πꞏfc = 2πꞏ2.4GHz RF carrier frequency 
I(t)   = mꞏΔ/2, m=±1, ±3,.… ±7 In-phase signal, coming as I-phase envelope, 
Q(t)  = nꞏΔ/2, n =±1, ±3,.… ±7 Quadrature-phase signal, coming as Q-phase envelope. 
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We use a phase-locked loop (PLL) to sample in-phase signal I(t)ꞏcos(ωct) at its maxima. Noise 
ratio NR = Imin/Eclkj,rms has to be at least 20dB larger than the noise power caused by the 
quadrature-phase signal Q(t)ꞏsin(ωct) at maximum amplitude Qmax=7ꞏΔ/2. What maximum 
standard-deviation σ of timing failure τ can we allow for the PLL? 
 
Imin(Δ) = ............... ,  Qmax(Δ) = ............... . 
 
NRdB = 20dB corresponds to a noise ratio NR = ....... in amplitude. 
 
The worst-case slope of the Q-signal is .................................... 
 
Its rms noise voltage due to σ is   eclkj,rms = ............................... 
 
Use this  is   eclkj,rms  to compute the σ we can allow for sampling the Q-signal  
 
 
.............................................................. 
 
.............................................................. 
 
.............................................................. 
 
.............................................................. 
 
.............................................................. 
 
.............................................................. 
 
.............................................................. 
 
Solutions: 
 
Exercise 1:  
We assume sampling of the sinusoidal curve Aꞏsin(ωct) at random time points. Given constants are standard deviation A, ϭ and ωc. and VCC. 
Compute Eclkj,rms. 

Combining (5.4.7-2) sE rmsclkj ,  with (5.4.7-4) 
22 )2/( cAs   delivers  

Eclkj,rms  = ϭ·Aωc/sqrt(2) = 1ps·(3V·2π·2.4MHz/sqrt(2) = 31.98µV 
Compute maximum SNR and SNRdB achievable with A=3V, ϭ=1ps and fc=2.4MHz, VCC.=3V. 
SNR = (3V)2/8 / (31.98μV)2 = 1.099·109    SNRdB = 90.41 dB 

 
Exercise 2a: Fill the gaps:  
It allows to represent ..64.. different values at a time by ...8...  different I- 
and ...8...  different Q-values:  Q/(Δ/2), I/(Δ/2) =  ±1, ±3, ± 5, ± 7  . 
This corresponds to .......ld(64) = ln(64)/ln(2) = 6..... parallel bits. 
 
Exercise 2b:  
Imin(Δ) = .....Δ/2....... ,  Qmax(Δ) = ......Δ·7/2..... . 
NRdB = 20dB corresponds to a factor NR = ..10... in amplitude. 
The worst-case slope of the Q-signal is ..s' = Qmax 2π fC = 7(Δ/2) 2π fC. 
Its rms noise voltage due to σ is   eclkj,rms = s'σ =.Qmax 2π fc = 14πσ (Δ/2)·fc 
Use this  is   eclkj,rms  to compute the σ we can allow for sampling the Q-signal  
From      NR ≤ Imin / eclkj,rms  =  Imin  / (s'σ)  
 = (Δ/2) / (σ 2π 7(Δ/2) fc) 
 =   1   / (σ 14π fc) 
follows: σ ≤ 1 / (NR 14π fc) = 1/(10·14π·2.4GHz) = 0.947ps 
Note: this is 0.227% of a 2.4GHz period, which is 1/2.4GHz = 417ps 
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Sources of clock jitter are particularly circuits like  
 
1. DLL: Delay locked loop 
2. PLL: Phase-locked Loop 
3. CDR: Clock-Data Recovery Circuit 
4. Software: Clocks signals computed by software 

 
 
1. DLL: Delay Locked Loop  
Operates a (typically voltage) controlled delay. It can delay a clock signal so that a retardation 
(for example caused by buffering the signal) can be compensated for.  
+ Best (=smallest) figures of phase noise. 
- Frequency differences cannot be compensated for (use signals from same clock source!). 
 
2. PLL: Phase Locked Loop 
Operates a (typically voltage) controlled local oscillator (LO). It can shift frequencies to match 
received frequency and phase. It is used e.g. for demodulation of FM and AM radio signals.  
+ Can synchronize its local oscillator (LO) to a range of external frequencies 
+ Better phase noise than CDR, worse than DLL 
- Continuous, uniform oscillation required, no “missing bits” on the data stream! 
 
3. CDR: Clock Data Recovery Circuit  
operates a (typically voltage) controlled local oscillator (LO) with a phase detector, that can 
swallow missing bits on a data stream. Used to recover the clock signal for USB bit-streams: 
However, in the USB community the CDR is mostly termed PLL. A good CDR can hold 
synchronicity over some 1000 bits without an edge (i.e. some 1000 ones ore zeros only) 
+ Can synchronize its local oscillator (LO) to a data stream with randomly arriving bits. 
± Better phase noise than software, worse than DLL and PLL. 
 
3. Software generated clock signals  
The author’s experience with 1’s and 0’s set be software to generate a clock signal are bad. The 
process of software processing and interrupt handling within a CPU is difficult to control and 
phase noise is quite unacceptable. 
- No special hardware (DLL, PLL, CDR) required (making it attractive to many engineers). 
- Typically poor phase noise. 
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5.4.8 ET&H : Noise Caused by the Track & Hold Circuit 

5.4.8.1 Ideal Sample & Hold Process 

Using the fact that 1)( 




dtt  the process of taking a single sample is mathematically modeled 

as 
 






 dtattyay )()()(  . 

 
with δ(t) being the Dirac function. Sampling, i.e. the process of translating a time-continuous 
to a time-discrete function, is described as 
 






 dtnTttyny
n

)()()(   

 
Unfortunately, there is no technical realization of this mathematical concept known to the 
author. In real systems track and hold circuits are used. 
 
 
5.4.8.2 Track & Hold Process Assuming a Maximum Voltage Step 

0
t


0

R
Re

Ci

fs

(a) (b)



Uin UCiRi

Rei

 

Fig. 5.4.8.2: (a) Track & Hold Circuit,   (b) waveform on the holding capacitor. 
 
 
A typical track & hold circuit can be modeled as a switch with RC lowpass as shown in the Fig. 
Above. The resistor Rei consists of an internal resistor Ri and an external resistor Re, which is 
the output impedance of the signal source: 
 
Rei = Ri + Re  
 
The customer’s impact on this system is given by Re and an the track- & hold-times of the 
sampler. During tracking, the switch is conducting and during hold it is open. In the worst case, 
a maximum initial voltage UCi0 (indicated as range R in the graphics) on the capacitor has to be 
discharged to zero. The discharge curve of the capacitor’s voltage is then 
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reaching the final accuracy of |UCi(tTrack)| ≤ Δ/2k with settling time 
 

0ln
/ 2
Ci

Track ei i k

U
t R C


. 

 
For an NoB-bit ADC with Δ=UCi0/2NoB we get 
 

 0 0

0

ln ln ln 2
/ 2 / 2

NOB kCi Ci
Track ei i ei i ei ik NoB k

Ci

U U
t R C R C R C

U




            
. 

 
Using ln(xn) = nꞏln(x) delivers the formulae typically found in data sheets for NoB-bit ADCs: 
 

( ) ln 2 ( ) 0.693Track ei i ei it R C NoB k R C NoB k     . 

 
With sampler cut-off frequency 1/ (2 )C ei if R C  this translates to  

 
1 0.11 ( )

( ) ln 2
2Track

C C

NoB k
t NoB k

f f
 

  
. 

 
Typically k=1 is assume and consequently an accuracy of Δ/2 to be achieved.  
 
According to Nyquist the maximum bandwidth that can be sampled is  
 

HoldTrack
SB tt
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
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Exercises 

Exercise 1: 
Assume tTrack=9ns sampler-settling time and an ADC’s conversion time of tHold=11ns. What is 
the maximum possible sampling frequency fS of the sampling system? (formula + value) 
 
 
..............................................................  
 
..............................................................  
 
Exercise 2: 
Regard your sampler as RC lowpass composed of Rei=1K, Ci=1pF and a required accuracy 
NoB=10 bits. Compute the required minimum time for tTrack. 
 
 
..............................................................  
 
..............................................................  
 
Exercise 3: 
Compute the bandwidth, fB, when tTrack=tHold for the setup in exercise 2. 
 
 
..............................................................  
 
..............................................................  
 
Exercise 4: 
Compute the cutoff frequency for the setup in exercise 2. 
 
 
..............................................................  
 
..............................................................  
 
 
Solutions 
Solution to exercise 1: 
Assume tTrack=9ns sampler-settling time and an ADC’s conversion time of tHold=11ns. What is the maximum possible sampling frequency fS of 
the sampling system? (formula + value) 
fS = 1/TS = 1/(tTrack+tHold) = 1/(9ns+11ns) = 1/20ns = 50 MHz 
 
Solution to exercise 2: 
Regard your sampler as RC lowpass with Rei=1K, Ci=1pF, NOB=10. Compute the required minimum time for tTrack with k=1. 
tTrack ≥ (NOB+k) ReiCi  ln(2) = (10+1) 10310-12F  0,693 = 7.62 ns 
 
Solution to exercise 3: 
Compute the bandwidth, fB, that can be sampled when tHold = tTrack for the setup in exercise 2. 
fB(tHold=tTrack) = 0.5∙fS =  0.5 / (2∙7.62ns) = 32.8 MHz 
 
Solution to exercise 4: 
Compute the cutoff frequency of the sampler’s RC lowpass for the setup in exercise 2. 
fC = 1/(2πReiCi) = 1/(2π10310-12F) = 159 MHz 
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5.4.8.3 Track & Hold Process Applied on Dynamic Input 

The following considerations for dynamic input are irrelevant for the ADA exam. 
 
 

THold TTrack

T=1/fs

t

s(t)Samples Uin, before sampling UCi, after sampling

THold TTrack

T=1/fs

THold TTrack

T=1/fs

THold TTrack

T=1/fs  

Fig. 5.4.8.3: (a) sampling system,   (b) RC discharge curve 
 
 
The formula found in data sheets and text books is typically tTrack(NOB) = (NOB+1)ReiC ln2. 
The consideration below sets some question marks behind it. 
 
Assuming the case of ideal sampling with tHold=0. Then UCi(f) = HLP(f)ꞏUin(f) with  
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 . The sampler's amplitude attenuation of a sinusoidal signal is consequently 
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Let signal  s(t) = (R/2)sin(2πfBt)  at bandwidth edge fB span signal range R, witch is subdivided 
by a NOB-bit ADC into 2NOB-1 deltas according to =R/(2 NOB-1)≈Rꞏ2- NOB. The maximum 
amplitude error caused by the sampler's attenuation is 
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On the other hand we have  
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From 
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and consequently  
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For x<<1 we can use  x
x




1
1

1
 and xx 21)1( 2  . Substituting x=2-NOB yields 
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In summary, to prevent the sampler's RC lowpass from causing amplitude errors > /2 the 
bandwidth of the sampled signal has to be limited to 
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Exercise 6: 
Compute the theoretical maximum of bandwidth, fB, for the sampler and ADC in exercise 2 
(having fC=159.15 MHz from Rei=1K, Ci=1pF, NOB=10). 
 
..............................................................  
 
Exercise 7: 
Compute the transfer function HLP(fB) of the sampler's RC lowpass and show that the error is 
ca. /2. 
 
..............................................................  
 
Solution to exercise 6: 
Compute the bandwidth, fB, when tTrack=tHold for the sampler and ADC in exercise 2. 
fB = fC/2(NOB-1)/2 = fC/2(10-1)/2 = 159.15 MHz/24.5 = 159.15 MHz/22.6 = 7.03 MHz 

 
Solution to exercise 7: 
Compute the transfer function HLP(fB) of the sampler's RC lowpass and show that the error is ca. /2. 
HLP(fB) = 1/sqrt(1+(fB/fC)2) = 1/sqrt(1+(7.03/159)2) = 0.9990, so that 1-HLP(fB)=10-3. Considering 
a signal range of ±R/2 subdivided into 210≈1000, 1/1000 of R/2 corresponds to a half . 
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5.4.9 Eotex : Other External Noise Sources 
There are several other external noises sources as Johnson noise of resistors or 1/f (pink) noise 
of FETs etc. Noise models are typically difficult to obtain. Here we consider thermal or so-
called Johnson noise, which has an easy and reliable model, as well as pink noise. 
 
 
5.4.9.1 EJ : Johnson = Thermal  Noise 

Due to temperature, atoms oscillate around their atomic lattice sites kicking electrons around 
which can be measured as thermal noise. 
 
While capacitors and inductors do not contribute Johnson noise, any resistor has a noise spectral 
density of 
 

' ( , ) 4JP f T kT    in   J = VAs = Ws = W/Hz 

 
with Boltzmann’s constant k=1.3806510-23J/K. and T being the absolute temperature in Kelvin 
(=temperature in °C+273.15). Note that the physical dimension of noise power density is 
power/Hz! This density is constant over the frequency axis. (In reality, this would deliver an 
infinite power for infinity bandwidth, but this formula is valid up to the Terra-Hertz range.) 
 
 
Examples: 
 ' 23 20

1( , 300 ) 4 1,380662 10 ( / ) 300 1,6568 10JP f T K VAs K K VAs         

 
 ' 20

2( , 600 ) 3,3136 10JP f T K VAs    

 
 ' 20

3( , 900 ) 4,9704 10JP f T K VAs    

 
 

1K 1M f / Hz0

PJ  (f,T)

10-20 VAs

0

(b) (c) (d)(a)

Un

InR

R

R

1,657
T1=300K

T2=600K

T3=900K

3,314

4,970 2

2

'

 

Fig. 5.4.9.1.1: (a) Noise power density of a resistor for 3 temperatures, (b) noisy resistor, 
(c) equivalent circuit with noise voltage and  (d) noise current source. 
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Example: The thermal noise power generated by a resistor in frequency band B=10...11 KHz at 
a temperature of T1=300K is  
 

11
' ' 20 17

1

10

( , 300 ) 4 1,657 10 1000 1,657 10
KHz

J J J

KHz

P P f T K df P B kTB VAs Hz VA             

 
 
As Johnson noise is constant („white“) over frequency, integration reduces to a simple 
multiplication with bandwidth B: 
 

kTBPJ 4  

 
As 2 2

, ,/J J rms J rmsP u R i R     this power is measurable as  

 

noise voltage  , 4J rms Ju P R kTBR     in  V      ' '
, 4J rms Ju P R kTR     in  /V Hz  

 

noise current  , / 4 /J rms Ji P R kTB R    in  A      ' '
, / 4 /J rms Ji P R kT R    in  /A Hz  

 
Consequently, in our converter noise models with error EJ,rms being a voltage we get 
 

2
, 4J rmsE kTBR   in  V2      , 4J rmsE kTBR   in  V  

 
See also: “Tontechnik-Rechner – segpielaudio”, available: http://www.sengpielaudio.com/calculator-noise.htm. 
 
 
Exercise 1: 

In a design with signal range of 0...VCC=3.3V you have a thermal noise power budget 
corresponding to an accuracy of 14 bit. Your Bandwidth is B=100MHz. Maximum operating 
temperature is T = 400K. What is the maximum resistor allowed at the ADC’s input? 
(k=1.3810-23J/K)    (Solution at → next page) 
 
 
 
 
 
 
 
Exercise 2: 

Same as exercise 1 with B=2.4GHz. Maximum resistor R=?           (Solution at → next page) 
 
 
.............................................................. 
 
 
.............................................................. 
 



M. Schubert  A/D and D/A Conversion OTH Regensburg 

 - 5.50 -

Exercise 3: Compute rms thermal noise density across capacitor C 

Fig. 5.4.91.2:  

(a) RC lowpass with noisy resistor. 

(b) RC lowpass like above with noiseless 
resistor and equivalent noises source 
u'R,rms. Un,eff

R
UC,eff

R

C

C UC,eff
 

 
Compute the noise power across capacitor C in Fig. 5.4.9.1.2 caused by resistor R. Capacitors 
and inductors do not generate thermal noise. 
 
Compute the spectral thermal noise power density )('2 , fu rmsR  generated by resistor R as a 

function of k, T, R with k being Boltzmann’s constant and T absolute temperature in K. 
 

)('2 , fu rmsR  =   4kTR  

 ................................................... 
 
Let HLP(f) be the transfer function of the low-pass. What is the spectral noise density across C 
as a function of u'R,rms(f) and HLP(f)?  
 

)('2 , fu rmsC  =  
22

, )(' fHu LPrmsR  

 ................................................... 
 
For a first order low-pass with pole in fB the transfer function is  HLP(f)=1/(1+jf/fB). What is 
the spectral noise density across C as a function of u'R,rms(f) and f/fB? 
 

2
,' rmsCu  =  

2
2

, )/(1

1
'

B
rmsR ff

u


 

 .................................................... 
 
 
Exercise 4: Approximation of 2

,rmsCu . 

We approximate | HLP(f)| piecewise with its asymptotes: 
 









BB

B
approxLPLP ffifff

ffif
fHfH

/

1
)()( ,  

 
Compute 2

,rmsCu by piecewise integration as function of u'R,rms and fB, both being constants. 

 

dffHuu
f

approxLPrmsRrmsC  


0

2

,
2

,
2

, )('  =    B

ff

B

f

f

rmsR fdf
f

f
dfu

B

B

21'
2

0

22
, 




















 





 

 .................................... 
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Exercise 5: Exact computation of 2
,rmsCu . 

As the lowpass is of first order, we can calculate an accurate solution of the integral using the 

mathematical textbook equation )/arctan(
)/(1 2

axa
ax

df


 . 

 

dffHuu
f

LPrmsRrmsC  


0

22
,

2
, )(' =   BBfBB

ff B
rmsR fffff

ff

df
u

B

57.1
2

)/arctan(
)/(1

' 02
2

, 











 

 .......................................... 
 
 
.............................................................. 
 
 
 
 
 
 
 
 
 
Solution to exercise 1: 
Planning a design with signal range of 0...VCC=3.3V you have a thermal noise power budget corresponding to an accuracy of 14 bit. Your 
Bandwidth is B1=100MHz. maximum operating temperature is T=400K. What is the maximum resistor allowed at the ADC’s input? 
(k=1.3810-23J/K) 

Signal power is 
8

2
2

max,
CC

rms

V
U  , available power budget 14*2

22

14
max,

2

8/

2
CCrms VU









=5.071 10-9V2  

Consequently:  
14*2

2

2

8/
4 CCV

kTBR     =>   

2

2*14

/ 8

4 2
CCV

R
kTB




 = 2,30 KΩ 

 
 
Solution to exercise 2: 
Same as exercise 1 with a bandwidth of B2=2.4GHz. Maximum resistor R=? 
We compensate for the division by B=100MHz by a corresponding multiplication with B and then 
divide by the new bandwidth B2=2.4GHz:    2.30KΩ∙B/B2 =·2.30KΩ∙100MHz/2.4GHz = 95.65 Ω 
 
 
Solution to exercise 3: 

The integration 


0

2
)(

f

approx dffH  delivers 2fB. In the exact computation we get  

  2/0
2

)/arctan(
)/(1

)( 0
0

2
0

2 
BBfBB

f Bf

exact fffff
ff

df
dffH 



 


 










 . 

Consequently, the exact result here is obtained from the approximated result with  

nVu
f

f
u

dfw

dfw

uu approxrmsC
B

B
approxrmsC

f

approx

f

exact

approxrmsCexactrmsC 2.510
22

2/
,,,,

0

0
,,,, 










 
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5.4.9.2 Epink : 1/f = Pink = Flicker  Noise 

Particularly in semiconductors and semiconductor/oxide interfaces, we find the so-called flicker 
noise, also termed 1/f noise or pink noise. "Pink" stems from the fact that 1/f-shaped visible 
light would be perceived pink. Fig. 5.4.9.2 illustrates a typical 1/f spectral noise density, part (a) 
with linear and (b) with logarithmic scaling. Note that in Fig. part (b) we have a slope 
of -10dB/dec (not -20dB/dec!), as we plot power (not amplitude) versus frequency. 
Quantitatively pink noise depends on the device.  
 
The simplest mathematical model for pink noise requires two parameters:  
 P'NF: the noise floor's spectral power density, and  
 fNC: the noise corner frequency where pink noise equals noise floor power density. 
 
For typical operational amplifiers fNC is some 100Hz. For typical MOSFETS pink noise 
becomes dominant over thermal noise below 100Hz [Hau99]. 
 
 

therm. Rauschen

0

(a)

f

(b)

log(f/Hz)

(Pnoise/P0) / dBPnoise

0

20

30

0,1 1 10

1/f-Rauschleistung 1/f-Rauschleistung
 (-10dB/dec)

1/f-Eckfrequenz

1/f-Eckfrequenz

 

Fig. 5.4.9.2: 1/f noise with (a) linear and (b) logarithmic scaling. 
 
 
Modeling 
 
P'pink(f) = P'NFꞏ fNC/ f  . 
 
A possible noise floor related to resistors was  
 
P'NF = 4kT. 
 
The total pink noise-power in frequency band f1 ... f2 becomes 
 

1

2''
21 ln),(

2

1
f

f
fPdf

f

f
PffP NCNF

f

f

NC
NFpink    . 

 
Offset.  
The offset drift e.g. of operational amplifiers versus time and temperature can be seen as low 
frequency 1/f noise. Offset at frequency 0Hz is theoretically infinite in the 1/f model but 
practically impossible, as it corresponds to an infinitely long period of time. 
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5.4.9.3 Ecur : Current Noise 

Hold a needle into a smooth jet of water from a garden hose and observe the effect. The small 
needle will strongly disrupt the water jet. Then try the same with a comb or a brush, they will 
destroy the smooth water jet. The perturbations observed may give you a figure of how charged 
doping atoms or grainy material disturbs a smooth current flow. For this reason, metal film 
resistors cause less current noise than grainy carbon layer resistors, and poly crystalline silicon 
causes more current noise than mono crystalline silicon. 
 
Current noise models are strongly material dependent and are in many cases difficult to obtain. 
 


