4 Operationsverstärker (OP, OV, OPV, engl. OA, OpAmp)

Der Operationsverstärker, im Deutschen mit OP, OV oder OPV abgekürzt, im Englischen als "operational amplifier", OA oder OpAmp bezeichnet, gilt als Arbeitspferd der Elektronik. In der analogen Schaltungstechnik ist er heutzutage das dominierende Bauelement.

4.1 Der ideale Operationsverstärker

- Unabhängigkeit von der Versorgungsspannung (Man beachte, daß in der Regel keine
- Versorgungsspannungen eingezeichnet sind und daß diese, wenn eine ausgeglichene Strombilanz gefordert ist, eingetragen werden müssen.)
- Unabhängigkeit vom Gleichtaktanteil des Eingangssignals (Common Mode Signal) $U_{in}^{=} = (U_{in}^{+} + U_{in}^{-})/2$. Es handelt sich um einen rein differentiellen Verstärker.
- Unbegrenzt schnell. De Facto ist die Verstärkung endlich und fällt bei hohen Frequenzen ab. Zudem kann der Ausgang auch seine parasitären Kapazitäten nicht unbegrenzt schnell umladen und hat daher eine maximale Anstiegsrate (Slew Rate), definiert als $\max\left\{\left|\frac{dU_{out}}{dt}\right|\right\} = 0,1...50V / \mu s.$

4.1.1 Idealer OPV ohne oder mit positiver Rückkopplung: Komparator

Bei positiver Rückkopplung arbeitet der OP die meiste Zeit mit relativ großer Eingangsspannungsdifferenz $U_{in,diff} = U_{in}^+ - U_{in}^-$, so daß sich der Ausgang wegen der hohen Verstärkung entweder an seinem Maximum $U_{out,max} = V_{DD} - U_{rest}$ oder seinem Minimum $U_{out,min} = V_{SS} + U_{rest}$ befindet.

4.1.1.1 Komparator

Der Komparator arbeitet ohne Rückkopplung. Er dient z.B. zur Analog-Digital-Umsetzung. Dabei erweist es sich als störend, daß verrauschte Signale in der Nähe von $U_{in,diff} = U_{in}^{+} - U_{in}^{-} \approx 0$ zu einem mehrfachen Wechsel der Ausgangsspannung führen.

Bild 4.1.1.1: Operationsverstärker als Komparator

4.1.1.2 Schmitt-Trigger

Der nach seinem Erfinder benannte Schmitt-Trigger nutzt positive Rückkopplung, z.B. zur Analog-Digital-Umsetzung. Er vermeidet, daß verrauschte Signale in der Nähe von $U_{in,diff} = U_{in}^{+} - U_{in}^{-} \approx 0$ zu einem mehrfachen Wechsel der Ausgangsspannung führen.

Bild 4.1.1.2(a): OP als Schmitt-Trigger: Rauschen abgeblockt.

Bild 4.1.1.2(b):

Der Schmitt-Trigger ist weniger durch die spezielle Schaltung mit einem OP als durch sein in Bild 4.1.1.2(b) gezeigtes Hystereseverhalten definiert. Simulatoren haben mit Hysterese enorme Schwierigkeiten, da es in einem bestimmten Bereich zwei richtige Lösungen für ein und die selbe Eingangsspannung gibt. Solche Probleme kann man z.B. durch Vorgabe von Knotenspannungen bei der Initialisierung lösen.

4.1.1.3 Oszillator

In Bild 4.1.1.3 wird die Hysterese des Schmitt-Triggers genutzt, um mit Hilfe eines verzögert nachlaufenden RC-Gliedes einen Oszillator zu bauen. Die Zeitkonstante des RC-Gliedes (hier 2,5 ms) kann aus dem Schnittpunkt einer Tangente an die Kondensatorspannung mit dem Endwert der Ladekurve gemessen werden.

Bild 4.1.1.3: (a) Oszillator auf Basis eines Schmitt-Triggers. (b) Signal-Zeit-Diagramm.

4.1.1.4 Fensterkomparator

Bild 4.1.1.4: Fensterkomparator, (a) Schaltung, (b) DC-Analyse (unfertig)

Bild 4.1.1.4(a) zeigt zwei OPs mit einem nachgeschalteten, passiven Netzwerk aus Widerständen und Dioden. Die Ausgänge der idealen OPs können Spannungen im Bereich von Vss bis V_{DD} annehmen. Bild 4.1.1.4(b) zeigt die Lage der Potentiale U_{ref1} und U_{ref2} im Spannungsbereich zwischen V_{DD} und Vss.

- Zeichnen Sie die Spannung $U_x(U_{in})$ in Bild 4.1.1.4(b) ein.
- Zeichnen Sie die Spannung $U_y(U_{in})$ in Bild 4.1.1.4(b) ein.
- Zeichnen Sie die Spannung U_{out}(U_{in}) in Bild 4.1.1.4(b) ein.

Die Spannungen U_x und U_y werden auf die Eingänge eines logischen UND-Gatters gelegt. Welche Bedingung muß U_{in} erfüllen, damit der Ausgang des UND-Gatters 'High' ist?

Eine solche Schaltung nennt man Fensterkomparator, weil sie die Einhaltung eines Spannungsfensters überwacht. Man findet solche Schaltungen häufig bei Sensoren. Beispielsweise könnte sie zusammen mit einem Temperaturfühler die Einhaltung eines geforderten Temperaturbereiches überwachen. In Kraftfahrzeugen werden viele Module nach dem Starten erst aktiv geschaltet, wenn die Spannng des Bordnetzes in einem zulässigen Bereich ("Fenster") liegt.

Bild 4.1.1.4 (b)

mit eingezeichneten Spannungen Ux, Uy, Uout.

4.1.1.5 Die wichtigsten Kennwerte realer Komparatoren

In der Praxis haben Komparatoren ohne Hysterese einen Offset und eine endliche Verstärkung, wobei letztere in vielen Regelkreisen (z.B. A/D Konverter) eine einschränkende Rolle spielen kann. Bei Komparatoren mit Hysterese wird die Verstärkung in der Regel mit ∞ angegeben.

Stromverbrauch und Preis steigen leider mit der Schnelligkeit des Komparators an.

Zudem ist auf folgende Parameter zu achten:

- "Input Voltage Range" (IVR): Spannungsbereich, in dem die Vergleichsentscheidung getroffen werden kann. Im Datenblatt des LT1719 findet man beispielweise die Aussage "The input voltage range extends from 100mV below V_{EE} to 1.2V below V_{CC}." Das ist beim Betrieb mit V_{CC}=2,7V eine erhebliche Einschränkung nach oben. Beim LT1711/1712 erstreckt sich der IVR von V_{EE} -0.1V ... V_{CC} + 0.1V, geht also auf beiden Seiten über den Versorgungsspannungsbereich hinaus.
- "Output Voltage Swing" Spannungsbereich, in dem sich die Ausgangsspannung bewegt, meist abhängig von V_{EE} und V_{CC}, dem Lastwiderstand und der Temperatur. Dabei bedeutet "rail to rail", von "V_{EE} to V_{CC}".

Ein weiterer wichtiger Punkt ist in den Datenblättern typischerweise als "Propagation Delay vs. Overdrive" angegeben. Dies ist die Verzögerung, mit der die 0/1-Entscheidung am Ausgang zustande kommt. Sie wird als Funktion der differentiellen Eingangsspannung und der Flanke (steigend/fallend) angegeben. Das Bild unten wurde dem LT1719 nachempfunden.

Bild 4.1.1.5: Verzögerung als Funkt. der diff. Eingangssp. (a) Messschaltung, (b) Diagramm

4.1.2 Idealer OPV mit negativer Rückkopplung

4.1.2.1 Der virtuelle Kurzschluß

4.1.2.1.1 Das Prinzip des virtuellen Kurzschlusses

Bild 4.1.2.1(a) zeigt einen OP, dessen Ausgang mit einer Impedanz Z auf den negativen Eingang zurückgekoppelt ist. Da es sich um einen invertierenden Eingang handelt, muß die Spannungsverstärkung in diesem Falle positiv genommen werden. Zum sicheren Verständnis schreiben wir sie in Betragsstrichen. Die Umformung nach Miller liefert dann gemäß Bild 4.1.2.1.1(b) eine Eingangsimpedanz von

$$Z_{in} = \frac{Z}{1 - A_{\nu}} = \frac{Z}{1 + |A_{\nu}|} \xrightarrow{|A_{\nu}| \to \infty} 0$$

Da für sehr hohe Verstärkungen $A_V = \rightarrow \infty$ die Eingangsimpedanz $Z_{in} \rightarrow 0$ strebt, konstruieren wir OPs mit sehr hoher differentieller Verstärkung und bezeichnen den negativen Eingang als virtuelle Masse (engl. virtual ground).

Bild 4.1.2.1.1: (a) OP mit negativer Rückkopplung und (b) Umformung nach Miller

Die Eingangsimpedanz des OPs bleibt weiterhin sehr hoch und der Eingang des OPs nimmt keinen Strom auf. Dieser wird vom Ausgang über die Impedanz Z abgezogen. Es handelt sich also um keinen echten Kurzschluß, sondern um einen durch Regelung erreichten, scheinbaren, also virtuellen Kurzschluß: $U_{in,diff} = U_{in}^{+} - U_{in}^{-} \cong 0$. Da der Ausgang auf Änderungen der Eingangsspannung extrem empfindlich reagiert, arbeitet er jeder Änderung der Eingangsspannung entgegen. Die tatsächliche Eingangsspannung bei endlicher Verstärkung berechnet sich per Definition zu

$$U_{in,diff} = \frac{U_{out}}{A_V}$$
. Bei $\Delta U_{out} \le 5V$ und $A_V = 100 dB = 10^5$ erhält man $\Delta U_{in,diff} \le 50 \mu V$.

Man beachte: Die Eingänge des OPs bleiben weiterhin extrem hochohmig. Der negative Eingang wird durch Gegenkopplung auf dem Potential des positiven Eingangs gehalten. Daher ist dieser Knoten sehr niederohmig. Der Knoten, der mit dem positiven Eingang verbunden ist, bleibt hochohmig. Es fließt kein Strom über den virtuellen Kurzschluß!

4.1.2.1.2 Anwendungsbeispiel des virtuellen Kurzschlusses: gesteuerte Stromquellen

In Bildteil (a) oben handelt es sich um eine **spannungsgesteuerte Stromquelle**. Wegen des virtuellen Kurzschlusses zwischen den Eingangsklemmen des OPs liegt die Eingangsspannung U_{in} am Widerstand R an. Daher muss dieser von dem Strom

$$I_{out} = \frac{U_{in}}{R},$$

durchflossen werden, welcher nur über das Drain des FETs abfließen kann.

In Bildteil (b) oben handelt es sich um eine stromgesteuerte Stromquelle. Wegen des virtuellen Kurzschlusses zwischen den Eingangsklemmen des OPs liegt die Eingangsspannung $U_{in} = I_{in}R_1$ auch am Widerstand R_2 an. Daher muss dieser von dem Strom

$$I_{out} = \frac{U_{in}}{R_2} = \frac{R_1}{R_2} I_{in},$$

durchflossen werden, welcher nur über das Drain des FETs abfließen kann.

4.1.2.2 Der ideale OP in der Grundschaltung als Invertierer

4.1.2.2.1 Einfacher Invertierer

Bild 4.1.2.2.1

Der Widerstand R_1 wirkt als Spannungs-Strom-Wandler, da U_{in}^- auf konstantem Potential gehalten wird. R_2 arbeitet als Strom-Spannungs-Wandler, weil der über R_1 eingespeiste Strom über R_2 fließen muß.

In Bild 4.1.2.2.2 wurden für die Impedanzen Z_1, Z_2 die Widerstände R_1, R_2 eingesetzt. Das Übertragungsverhalten im Zeitbereich und im s-Bereich ergibt sich damit zu

$$U_2(t) = -\frac{R_2}{R_1}U_1(t)$$
 und $U_2(s) = -\frac{R_2}{R_1}U_1(s)$.

Übertragungsfunktion und Eingangswiderstand sind

$$H(s) = -\frac{R_2}{R_1} \quad \text{und} \quad \boxed{Z_{in} = R_1}.$$

4.1.2.2.2 Verallgemeinerung des Prinzip des als Invertierer geschalteten OPs

Bild 4.1.2.2.2

Die Impedanz Z_1 wirkt als Spannungs-Strom-Wandler, da U_{in}^- auf konstantem Potential gehalten wird. Z_2 arbeitet als Strom-Spannungs-Wandler, weil der über Z_1 eingespeiste Strom über Z_2 fließen muß.

Aufgrund des virtuellen Kurzschlusses ist in Bild 4.1.2.2.1 das Potential $U(n'_0) = U_{in}^- = U_{in}^+ = 0$ bekannt.

Der Eingangsstrom berechnet sich damit zu
$$I_1 = \frac{U_1 - U_{in}}{Z_1} = \frac{U_1 - U_{in}}{Z_1} = \frac{U_1 - 0}{Z_1} = \frac{U_1}{Z_1}$$

Ebenso berechnet sich der Strom durch Z_2 zu $I_2 = \frac{U_2 - U_{in}}{Z_2} = \frac{U_2 - U_{in}}{Z_2} = \frac{U_2 - 0}{Z_2} = \frac{U_2}{Z_2}$.

In den Eingang des OPs kann kein Strom fließen. Gemäß Kirchhoff ist dann

$$I_2 = -I_1$$
 und somit $U_2 = -\frac{Z_2}{Z_1}U_1$.

Das gilt sowohl für den Zeitbereich, also $U_k = U_k(t)$ (k=1,2), als auch für den s-Bereich der Laplace-Transformierten mit $U_k = U_k(s)$. Damit ergibt sich die Übertragungsfunktion zu

$$H(s) = \frac{U_2}{U_1} = -\frac{Z_2}{Z_1}$$

Da der Knoten n'_0 als virtuelle Masse wirkt, sieht die Spannungsquelle U_1 eine Eingangsimpedanz von

$$Z_{in} = \frac{U_1}{I_1} = Z_1 \ .$$

4.1.2.2.3 Summierer für Ströme: Strom-Spannungs-Wandler

Die virtuelle Masse wird auch als Summationspunkt bezeichnet. Ströme lassen sich leicht in einem Schaltungsknoten summieren. Der Gesamtstrom $I_{sum} = \sum I_k = \sum U_k / R_k$ in Bild 4.1.2.2.3 muß über R_x abfließen. Damit ergibt sich die Ausgangsspannung zu

$$U_{out} = -R_x I_{sum} = -R_x \sum_{k=1}^n I_k$$
.

4.1.2.2.4 Invertierender Summierer für Spannungen

Spannungen lassen sich nicht wie Ströme in einem Schaltungsknoten summieren, es wäre eine serielle Summation notwendig. Daher werden in Bild 4.1.2.2.4 die Spannungen $U_1...U_n$ in die Ströme $I_i = G_i U_i$ (i=1...n) umgewandelt. Die Spannungsquelle U_i sieht die Impedanz $R_i = 1/G_i$. Der Gesamtstrom $I_{sum} = \sum I_i = \sum G_i U_i$ muß über Z_k abfließen. Dabei wird der Gesamtstrom wieder in eine Spannung umgewandelt:

$$U_{out} = -Z_k I_{sum} = -Z_k \sum_{i=0}^{n-1} G_i U_i \; .$$

4.1.2.2.5 Digital-Analog-Wandler

Bild 4.1.2.2.5 OP als Digital-Analog-Wandler

In Bild 4.1.2.2.5 schaltet der Schalter a_k den Strom $I_k = U_{ref}G_k$. Mit $G_k = G_0 \cdot 2^k$ ergibt sich ein Gesamtstrom von $I_{sum} = \sum I_k = \sum U_{ref}G_ka_k = U_{ref}G_0\sum a_k2^k$, wobei $a_k \in \{0,1\}$ je nach Schaltzustand Null oder Eins ist. Die Ausgangsspannung eines n-Bit Wandlers ist damit

$$U_{out} = -R_{ref}I_{sum} = -U_{ref}R_{ref}G_0\sum_{k=0}^{n-1}a_k2^k$$
.

Damit das LSB (Least Significant Bit) nicht in der Ungenauigkeit des MSB (Most Significant Bit) verlorengeht, muß der größte Leitwert eine Genauigkeit von 2⁻ⁿ haben. Mit 1%-Widerständen kommt man auf maximal 7 Bit (da 2⁻⁷=1/128<0,01). Ein CD-Player hat 16 Bit. Diese setzen meist die Schnelligkeit der Elektronik in Genauigkeit um: Ein 1-Bit Datenstrom trägt das Ergebnis im Mittelwert ($\Sigma\Delta$ -Modulation), den z.B. ein Tiefpaßfilter bilden kann.

- SC / Seite 4-10 -

4.1.2.2.6 Integrator

Bild 4.1.2.2.6-1

Idealer Operationsverstärker (OP) mit Beschaltung als Integrator.

Bild 4.1.2.2.6-1 zeigt einen idealen Operationsverstärker (OP), der mit zwei passiven Bauelementen beschaltet ist.

Wegen des virtuellen Kurzschlusses zwischen Uinn und Masse ist die Eingangsimpedanz

$$Z_{in} = R$$

Den Strom I_R durch den Widerstand R berechnet sich zu

$$I_R = \frac{U_1 - U_{im}}{R} = \frac{U_1}{R}$$

Da in den Eingang des OPs kein Strom fließen kann, ist

$$I_C = I_R = U_1 / R$$

Es sei Uco die Spannung über der Kapazität zu Beginn der Integration. Dann ist

$$-U_{C}(t) = \frac{1}{C} \int I_{C} dt + U_{C0} = \frac{1}{C} \int \frac{U_{1}}{R} dt + U_{C0} = \frac{1}{RC} \int U_{1} dt + U_{C0}$$

Die Spannung U₂(t) ergibt sich damit zu

$$U_{2}(t) = U_{C}(t) = -\frac{1}{RC} \int U_{1} dt - U_{C0}$$

Im Laplace-Bereich erhält man die Übertragungsfunktion H(s)=U₂(s)/U₁(s) zu

$$H(s) = -\frac{Z_2(s)}{Z_1(s)} = -\frac{1/sC}{R} = -\frac{1}{sRC} \implies H(s) = -\frac{1}{sRC}$$

Mit s=j ω und berechnet sie die Transitfrequenz $\omega_T = 2\pi f_T = 1/RC$ dieser Baugruppe zu

$$H(j\omega) = -\frac{1}{j\omega RC} = j\frac{1}{\omega RC} = j\frac{\omega_T}{\omega} \implies |H(jf_T)| = 1 = \left|j\frac{1}{2\pi f_T RC}\right| \implies f_T = \frac{1}{2\pi RC}$$

Mit diesen Angaben läßt sich das Bode-Diagramm gemäß Bild 4.1.2.2.6-2 zeichnen. Ein reiner Integrator hat eine Phase von -90°. Hier erhält man eine Phase von +90°, weil der Invertierer das Vorzeichen umkehrt und die Phase dadurch um 180° verschiebt.

Ein Invertierer kann nicht höher verstärken, als es die maximale Verstärkung des verwendeten OPs zuläßt. Daher ist in Bild 4.1.2.2.6-2 eingezeichnet, wie sich diese Baugruppe unter Verwendung eines OPs mit einer Verstärkung von 100 dB verhält.

4.1.2.2.7 Differenzierer

Bild 4.1.2.2.7-1

Idealer Operationsverstärker (OP) mit Beschaltung als Differenzierer.

Berechnung im Zeitbereich:

Bild 4.1.2.2.7-1 zeigt einen idealen Operationsverstärker (OP), der mit zwei passiven Bauelementen beschaltet ist. Die Spannung $U_{in,p}$ sei konstant. Wegen des virtuellen Kurzschlusses ist dann auch $U_{in,n} = U_{in,p}$ konstant. Der Strom I_C(t) ergibt sich damit zu

$$I_{C}(t) = C \frac{dU_{C}(t)}{dt} = C \frac{d(U_{1}(t) - U_{im})}{dt} = C \frac{dU_{1}(t)}{dt}$$

Mit $I_R = I_C$ erhält man

$$U_2(t) = U_{im} - I_C(t) \cdot R \quad .$$

Für den idealen OP (i.e. Uoffset=0V, Av->∞, Zin->∞) erhält man die Ausgangsspannung

$$U_2(t) = U_{im} - I_C(t)R \implies U_2(t) = -RC\frac{dU_1}{dt}$$

 $U_2(t)$ ist also proportional zur Ableitung $dU_1(t)/dt$. Der Arbeitspunkt von U_2 ist mittels $U_{in,p}$ einstellbar.

Berechnung im Frequenzbereich:

Die Übertragungsfunktion $H(s)=-U_2(s)/U_1(s)$ berechnet sich zu

$$H(s) = -\frac{Z_2(s)}{Z_1(s)} = -\frac{R}{1/sC} = -sRC \implies H(s) = -sRC$$

Mit $s = j\omega$ erhält man $H(j\omega) = j\omega RC$ und daraus die Transitfrequenz fr dieser Baugruppe:

$$H(s) = -sRC \xrightarrow{s=j\omega} H(f) = -j\omega RC = -j\frac{\omega}{\omega_T} = -j\frac{f}{f_T} \qquad \text{mit} \qquad \qquad f_T = \frac{1}{2\pi RC}$$

Transitfrequenz bedeutet einen Amplitudengang von 0dB oder $|H(j\omega_T)|=1$. Dies ist dann der Fall, wenn der Blindwiderstand 1/sC der Kapazität gleich *R* ist.

Die Eingangsimpedanz $Z_{in}(j\omega)$ der Schaltung (bei konstantem $U_{in,p}$) ist gleich dem Blindwiderstand der Kapazität:

Jeder reale OP hat eine endliche Verstärkung $A_{V,max}$. Diese kann von der Baugruppe nicht übertroffen werden, so daß die mit 20dB/dec ansteigende Kurve in Bild 4.1.2.2.7-2 (a) notwendiger Weise durch $A_{V,max}$ begrenzt ist. Der so entstehende Knick in der Kennlinie entspricht einem Pol muß auch mit der zugehörigen Phasendrehung einhergehen, die in Bild 4.1.2.2.7-2 (b) gestrichelt eingezeichnet ist.

Der Differenzierer in Bild 4.1.2.2.7-1 hat gravierende Nachteile:

- Er verstärkt besonders das hochfrequente Rauschen.
- Er neigt zur Instabilität, denn einen idealen OP gibt es nicht. Jeder reale OP hat selbst Pole (Weiteres siehe in Kap. 5.)
- Er belastet die Quelle mit zunehmender Frequenz praktisch unbegrenzt.

4.1.2.2.8 Invertierer, Integrator, Differenzierer mit geschalteten Kapazitäten (optional)

Bild 4.1.2.2.8:

Idealer Operationsverstärker (OP) mit geschalteten Kapazitäten. Möglichkeiten: Vorzeichenumkehr von U₁, Betrieb als Proportionalverstärker, Integrator, Differenzierer möglich, zudem Vorzeichenumkehr von U₁.

Dies ist ein zeitdiskretes (engl. time discrete) Filter, bisher waren sie zeitkontinuierlich (engl. time continuous).

Proportionalverstärker: S₁, S₂, S₃ schalten mit jedem Takt.

Integrator: S₃ durchgehend offen (, wie beim RC-Integrator), C₁ arbeitet als Widerstand.

Differenzierer: S_1 und S_2 durchgehend in oberer Stellung (, wie beim RC-Differenzierer), C_2 arbeit als Widerstand, d.h. C_2 wird mit jedem Takt über S_3 entladen.

Vorzeichenumkehr von U₁: Die Schalter S₁ und S₂ arbeiten gegenphasig. (Nicht beim Differenzierer möglich, da dort S₁ und S₂ durchgehend in oberer Stellung verbleiben).

4.1.2.2.9 Differenzierer mit Polstelle

Bild 4.1.2.2.9:

Differenzierer mit vorgeschaltetem Widerstand R1.

In Bild 4.1.2.2.9 wurde dem Differenzierer eine Widerstand R_1 vorgeschaltet, der für die Eingangsimpedanz Werte von $Z_{in} \ge R_1$ garantiert:.

$7(i\omega) - R$	j	$\xrightarrow{f \to \infty} R$
$L_{in}(f\omega) = R_1$	ωC_1	<i>/n</i> ₁

Wird R_1 hinreichend groß dimensioniert, verhindert er die Instabilität der Schaltung. (Details zur Berechnung von R_1 findet der interessierte Leser im Skript von Prof. Haggenmiller).

Wenn der OP in Bild 4.1.2.2.9 ideal ist, die Transitfrequenz f_T 1 KHz und die maximale Verstärkung 50 dB beträgt, dann liefert diese Schaltung ebenfalls das in Bild 4.1.2.2.7 gezeigte Bode-Diagramm.

4.1.2.2.10 Differenzierer mit Integrator im Rückkopplungszweig

Es ist in Bild 4.1.2.2.10 $Z_{in} \rightarrow \infty$. Der virtuelle Kurzschluß von OP₁ erzwingt U_x=U_{in}. Da OP₂ mit seiner Beschaltung einen Integrator darstellt, gilt

$$U_x = -\frac{1}{RC} \int U_{out}(t) dt$$

Durch Differentiation dieser Gleichung folgt unmittelbar die Gleichung des Differenzierers:

$$U_{out} = -RC \frac{dU_x}{dt} = -RC \frac{dU_{in}}{dt} \ .$$

4.1.2.2.11 Integrator mit Nullstelle

Bild 4.1.2.2.11: (a) Beschalteter, idealer Operationsverstärker, (b) Bode-Diagramm.

Die Übertragungsfunktion H(s) der in Bild 4.1.2.2.11(a) dargestellten Schaltung ist

$$H(s) = -\frac{Z_2}{Z_1} = -\frac{\frac{1}{sC_2} + R_2}{R_1} = -\frac{1 + sR_2C_2}{sR_1C_2}$$

Sie hat die Frequenz der Nullstelle

$$f_z = \frac{1}{2\pi R_2 C_2}$$

und die Polstelle

$$f_{p} = 0$$

Bild 4.1.2.2.11(b) zeigt das zugehörige Bodediagramm als Tangentennäherung. Beachte: Der nicht-invertierende Tiefpaß würde bei einer Phasendrehung von –90° beginnen. Dieser Tiefpaß beginnt, weil der OP invertierend geschaltet werden muß, bei einer Phase von +90°.

4.1.2.2.12 Einstellbarer Tiefpaß / Hochpaß, RC seriell

Bild 4.1.2.2.12: (a) Beschalteter, idealer Operationsverstärker, (b) Bode-Diagramm.

Die Übertragungsfunktion H(s) der in Bild 4.1.2.2.12(a) dargestellten Schaltung ist

$$H(s) = -\frac{Z_2}{Z_1} = -\frac{C_1}{C_2} \cdot \frac{1 + sR_2C_2}{1 + sR_1C_1} \quad \text{mit} \quad Z_k(s) = \frac{1}{sC_k} + R_k = \frac{1 + sR_kC_k}{sC_k} \quad \text{für } k = 1, 2$$

Sie hat eine Polstelle in $f_p = \frac{1}{2\pi R_1 C_1}$ und eine Nullstelle in $f_z = \frac{1}{2\pi R_2 C_2}$.

Asymptoten: $H(jf > 0) \rightarrow -C_1/C_2$ und $H(jf > j\infty) \rightarrow -R_2/R_1$. Je nach Einstellung der Pol- und Nullstelle kann die Schaltung als Hochpaß ($f_z < f_p$) oder Tiefpaß ($f_z > f_p$) eingestellt werden.

Vorteil: $Z_{in} = Z_1 \ge R_1$, die maximale Belastung der Quelle ist definierbar.

Nachteil: Die Schaltung ist nicht zu empfehlen, da $Z_1, Z_2 \rightarrow \infty$ für s->0, so dass sie im DC-Fall unkontrollierbar ist und C₂ sehr wahrscheinlich durch Offsetströme aufgeladen wird.

Beispiel, veranschaulicht in Bild 4.1.2.2.12(b): R₂=10R₁ und C₂=100C₁.

Asymptoten: $H(jf > 0) \rightarrow -C_1/C_2 = 0,01$ und $H(jf > j\infty) \rightarrow -R_2/R_1 = -10$

$$\frac{f_p}{f_z} = \frac{1}{2\pi R_1 C_1} / \frac{1}{2\pi R_2 C_2} = \frac{R_2 C_2}{R_1 C_1} = \frac{10R_1 100C_1}{R_1 C_1} = 1000.$$

4.1.2.2.13 Einstellbarer Tiefpaß / Hochpaß, RC parallel

Bild 4.1.2.2.13: (a) Beschalteter, idealer Operationsverstärker, (b) Bode-Diagramm.

Die Übertragungsfunktion H(s) der in Bild 4.1.2.2.12(a) dargestellten Schaltung ist

$$Z_k(s) = \frac{1}{sC_k} \parallel R_k = \frac{R_k}{1 + sR_kC_k} \quad \text{für } k = 1, 2, \qquad H(s) = -\frac{Z_2}{Z_1} = -\frac{R_2}{R_1} \cdot \frac{1 + sR_1C_1}{1 + sR_2C_2}$$

Sie hat eine Polstelle in $f_p = \frac{1}{2\pi R_2 C_2}$ und eine Nullstelle in $f_z = \frac{1}{2\pi R_1 C_1}$.

Asymptoten: $H(jf>0) \rightarrow -R_2/R_1$ und $H(jf>j\infty) \rightarrow -C_1/C_2$. Je nach Einstellung der Pol- und Nullstelle kann die Schaltung als Hochpaß ($f_z < f_p$) oder Tiefpaß ($f_z > f_p$) eingestellt werden.

Nachteil: Die Schaltung ist für hohe Frequenzen nicht zu empfehlen, da $Z_{in}=Z_1 \rightarrow 0$ und $Z_2 \rightarrow 0$ für s->∞, so dass sie für f->j∞ die Quelle und den Ausgang des OPs überlastet.

Beispiel, veranschaulicht in Bild 4.1.2.2.13(b): R₂=10R₁ und C₂=100C₁.

Asymptoten: $H(jf \ge 0) \ge -R_2/R_1 = -10$ und $H(jf \ge j\infty) \ge -C_1/C_2 = 0.01$

$$\frac{f_z}{f_p} = \frac{1}{2\pi R_1 C_1} / \frac{1}{2\pi R_2 C_2} = \frac{R_2 C_2}{R_1 C_1} = \frac{10R_1 100C_1}{R_1 C_1} = 1000.$$

4.1.2.2.14 Einstellbarer Bandpass / Bandstopp: RC parallel und seriell

Bild 4.1.2.2.14: (a) OPV mit bi-quadratischer Übertragnungsfunktion, (b) Bode-Diagramm.

Die Übertragungsfunktion der in Bild 4.1.2.2.14 (a) dargestellten Schaltung ist mit $H(s) = -Z_2 / Z_1$ gegeben. Z_1 und Z_2 sind darstellbar als :

$$Z_{1}(s) = \left(\frac{1}{sC_{d}} + R_{c}\right) \left\| R_{d} = \frac{1 + sR_{c}C_{d}}{1 + s(R_{c} + R_{d})C_{k}} \cdot R_{d},$$

$$Z_{2}(s) = \left(\frac{1}{sC_{i}} + R_{i}\right) \left\| R_{h} = \frac{1 + sR_{i}C_{i}}{1 + s(R_{h} + R_{i})C_{i}} \cdot R_{h},$$

$$H(s) = -\frac{Z_{2}}{Z_{1}} = -\frac{R_{h}}{R_{d}} \cdot \frac{1 + s(R_{c} + R_{d})C_{d}}{1 + sR_{d}C_{d}} \cdot \frac{1 + sR_{i}C_{i}}{1 + s(R_{h} + R_{i})C_{i}} \quad \longleftrightarrow \quad A_{0} \cdot \frac{1 + s/\omega_{dn}}{1 + s/\omega_{dp}} \cdot \frac{1 + s/\omega_{in}}{1 + s/\omega_{ip}}$$

Die Indizes *i*, *d*, *n*, *p* stehen für: integrierend, differenzierend, Nullstelle, Polstelle. Beispiele:

- *f_{in}, f_{ip}*: Nullstellen und Pol-Frequenzen des integrierenden Anteils
- f_{dn} , f_{dp} : Nullstellen- und Pol-Frequenzen des differenzierenden Anteils

Nach Vorgabe der Bauelemente erhalten wir folgende Charateristik:

$$A_{0} = -\frac{R_{h}}{R_{d}}, \quad \omega_{ip} = \frac{1}{(R_{h} + R_{i})C_{i}}, \quad \omega_{in} = \frac{1}{R_{i}C_{i}}, \quad \omega_{dn} = \frac{1}{(R_{c} + R_{d})C_{d}}, \quad \omega_{dp} = \frac{1}{R_{c}C_{d}}$$

- SC / Seite 4-20 -

In der Praxis möchte man jedch eher die Kennlinie vorgeben als die Bauelemente. Bei 5 Vorgaben aus der Kennline und 6 Bauelementen kann man 1 Bauelement frei wählen.

Gegeben sei Ci. Daraus berechnet sich

$$R_{i} = \frac{1}{2\pi f_{in}C_{i}}, \quad R_{h} = \frac{1}{2\pi C_{i}} \left(\frac{1}{f_{ip}} - \frac{1}{f_{in}}\right), \quad R_{d} = \frac{R_{h}}{|A_{0}|}, \quad R_{c} = \frac{R_{d}}{f_{dp} / f_{dn} - 1}, \quad C_{d} = \frac{1}{2\pi f_{dn}R_{c}}$$

(a) "Schematics" in *LTspice*:

Bild 4.1.2.2.14-LTspice: Simulation mit LTspice

Listing 4.1.2.2.14: Matlab-Berechnung der Bauelemente-Parameter mit LTspice

```
% Set charateristics for bi-quadratic bandpass or bandstop
A0=-1/10; fdn=10e-3; fdp=10^4*fdn; fip=1e3;
                                              fin=10^3*fip; % Bandpass
A0=-100; fip=10e-3; fin=100;
                                   fdn=1e3;
                                              fdp=10^3*fdn; % Bandstop
% Computing device paramters
Ci=110e-6;
Ri=1/(2*pi*fin*Ci);
Rh=(1/fip-1/fin)/(2*pi*Ci);
Rd=Rh/abs(A0);
Rc=Rd/(fdp/fdn-1);
Cd=1/(2*pi*fdp*Rc);
% Back check: compute charateristics from device paramters
fin_=1/(2*pi*Ri*Ci); fip_=1/(2*pi*(Rh+Ri)*Ci);
fdp_=1/(2*pi*Rc*Cd); fdn_=1/(2*pi*(Rd+Rc)*Cd);
```

4.1.2.2.15 Lineare Regler <Unterkapitel unfertig>

Bild 4.2: Reglerschaltungen: (a) P, (b) I, (c), (d) PI, (e) PID

Invertierer verwenden, negatives Vorzeichen hinnehmen. (Es lässt sich in der Anwendung meist relativ leicht richtig umwandeln.) Controller Transfer-Funktion (*CTF*) als Funktion der *Laplace*-Variablen *s*:

P-Regler: Proportional verstärker mit 2 Widerständen: $CTF(s) = K_P = K_P = \frac{R_d}{R_i}$ Geg.: K_P und Eingangswiderstand $R_{in} \rightarrow$ Bauelemente: $R_i = R_{in}$, $R_d = K_P \cdot R_i$.

PI-Regler: Integrator mit Nullstelle: $CTF(s) = K_P + \frac{K_I}{s} = \frac{K_I + K_P \cdot s}{s}$ $Z_1 = R_i, \quad Z_2 = R_d + \frac{1}{sC_i} = \frac{1 + R_dC_i \cdot s}{C_i \cdot s} \rightarrow CTF(s) = \frac{Z_2}{Z_1} = \frac{1 + R_dC_i \cdot s}{R_iC_i \cdot s} = \frac{\frac{1}{R_iC_i} + \frac{R_d}{R_i} \cdot s}{s}$

KJoeffizientenvergleich: $K_P = \frac{R_d}{R_i}$, $K_I = \frac{1}{R_i C_i} =: \omega_i$ (=: bedeutet *per Definition*) Geg.: $K_P, K_I, R_{in} \rightarrow$ Bauelemente: $R_i = R_{in}$, $R_d = K_P \cdot R_i$, $C_i = \frac{1}{R_i K_i}$

- SC / Seite 4-22 -

PID-Regler:
$$CTF(s) = K_p + \frac{K_I}{s} + K_D \cdot s = \frac{K_I + K_P \cdot s + K_D \cdot s^2}{s}$$

Gemäß Bildteil (e):
$$Z_1 = R_i \| \frac{1}{sC_d} = \frac{R_i}{1 + R_i C_d \cdot s}, \quad Z_2 = R_d + \frac{1}{sC_i} = \frac{1 + R_d C_i \cdot s}{C_i \cdot s} \rightarrow CTF(s) = \frac{Z_2}{Z_1} = \frac{(1 + R_d C_i \cdot s)(1 + R_d C_i \cdot s)}{R_i C_i \cdot s} = \frac{\frac{1}{R_i C_i} + \left(\frac{R_d}{R_i} + \frac{C_d}{C_i}\right) \cdot s + R_d C_d \cdot s^2}{s}$$

Koeffizientenvergleich: $K_P = \frac{R_d}{R_i} + \frac{C_d}{C_i}, \quad K_I = \frac{1}{R_i C_i} = \omega_i, \quad K_D = R_d C_d =: \frac{1}{\omega_d}$

Geg.: KP, KI, KD, Rin . Zwei Sets Rd, Cd, möglich, typisch: größeres Rd, kleineres Cd:

Bauelemente:
$$R_i = R_{in}$$
, $C_i = \frac{1}{R_i K_I}$, $R_d = \frac{K_P R_i}{2} \left(1 \pm \sqrt{1 - 4 \frac{K_I K_D}{K_P^2}} \right)$, $C_d = \frac{K_D}{R_d}$

PID-Regler mit Differentiator-Pol $\omega_{pd} = 1/\tau_{pd}$

Geg.: K_{P} , K_{I} , K, $\tau_{pd} = 1/\omega_{pd}$, R_i

$$CTF(s) = K_{p} + \frac{K_{I}}{s} + \frac{K_{D} \cdot s}{1 + \tau_{pd} \cdot s} = \frac{K_{I} + (K_{p} + K_{I}\tau_{pd}) \cdot s + (K_{D} + K_{p}\tau_{pd}) \cdot s^{2}}{s + \tau_{pd} \cdot s^{2}}$$

Gemäß Bildteil (ff):

$$Z_{1} = \frac{R_{i}\left(1 + R_{pd}C_{d}s\right)}{1 + (R_{i}C_{d} + R_{pd}C_{d})s} , \quad Z_{2} = \frac{1 + R_{d}C_{i} \cdot s}{C_{i} \cdot s}$$

$$CTF(s) = \frac{Z_{2}}{Z_{1}} = \frac{\frac{1}{R_{i}C_{i}} + \left(\frac{R_{d}}{R_{i}} + \frac{C_{d}}{C_{i}} + \frac{R_{pd}C_{d}}{R_{i}C_{i}}\right) \cdot s + \left(R_{d}C_{d} + \frac{R_{d}}{R_{i}}R_{pd}C_{d}\right) \cdot s^{2}}{s + s^{2} \cdot R_{pd}C_{d}}$$

$$CTF(s) = \frac{Z_{2}}{Z_{1}} = \frac{a_{0} + a_{1} \cdot s + a_{2} \cdot s^{2}}{b_{0} + b_{1} \cdot s + b_{2} \cdot s^{2}}$$

Aufstellung der Bestimmungsgleichungen:

$$b_0=0, \qquad b_1=1.$$

Vergleich von b_2 : $\tau_{pd} = R_{pd}C_d$,

Vergleich von *ao*: $K_I = \frac{1}{R_i C_i}$

Vergleich von a_1 : unter Berücksichtigung von a_0 und b_2 : $K_P = \frac{R_d}{R_i} + \frac{C_d}{C_i}$,

Vergleich von a2:
$$K_D + K_P \tau_{pd} = R_d C_d + \frac{R_d}{R_i} R_{pd} C_d$$

Berechnung der Baulemente bei gegebenen K_P , P_I , K_D , $\tau_{pd}=1/\omega_{pd}$, R_i :

Berechnung von *C*_{*i*}:

$$C_i = \frac{1}{R_i K_I} \qquad (\text{aus } a_0: K_I = \frac{1}{R_i C_i})$$

Berechnung von *Cd*: aus Vergliche von *a2*:

$$\begin{split} K_{D} + K_{P}\tau_{pd} &= R_{d}C_{d} + \left(K_{P} - \frac{C_{d}}{C_{i}}\right)\tau_{pd} \rightarrow K_{D} = C_{d}(R_{d} - \tau_{pd} / C_{i}) \rightarrow C_{d} = \frac{K_{D}}{R_{d} - \tau_{pd} / C_{i}} \\ K_{P} &= \frac{R_{d}}{R_{i}} + \frac{C_{d}}{C_{i}} = \frac{R_{d}}{R_{i}} + \frac{K_{d}}{C_{i}(R_{d} - \tau_{pd} / C_{i})} = \frac{R_{d}}{R_{i}} + \frac{K_{d}}{R_{d}C_{i} - \tau_{pd}} \\ \frac{R_{d}}{R_{i}} - K_{P} + \frac{K_{d}}{R_{d}C_{i} - \tau_{pd}} = 0 \rightarrow R_{d}(R_{d}C_{i} - \tau_{pd}) - K_{P}R_{i}(R_{d}C_{i} - \tau_{pd}) + K_{d}R_{i} = 0 \\ C_{i}R_{d}^{2} - (\tau_{pd} + K_{P}R_{i}C_{i})R_{d} + R_{i}(K_{d} + K_{P}\tau_{pd}) = 0 \\ R_{d} &= \frac{K_{P}R_{i} + \tau_{pd} / C_{i}}{2} \cdot \left(1 \pm \sqrt{1 - 4\frac{K_{I}(K_{D} + K_{P}\tau_{pd})^{2}}{(K_{P} + K_{I}\tau_{pd})^{2}}}\right), \end{split}$$

Es gibt als 2 Lösungen für R_d , C_d . Typischerweise nimmt man für R_d den größeren Wert (positive Wurzel), so dass sich für C_d der kleinere Wert ergibt.

Zu beachten ist auch, dass diese Formel zu Berechnung von R_d nur sinnvoll ist, wenn das Argument unter der Wurzel nicht negativ wird. Wurzelberechnung in *LTspice XVII* gemäß

[https://www.analog.com]:

$$sqrt(x) \coloneqq \begin{cases} \sqrt{x} & if \quad x \ge 0\\ 0 & if \quad x \le 0 \end{cases}$$

$$C_d = \frac{K_D}{R_d - \tau_{pd} / C_i} , \quad R_{pd} = \frac{\tau_{pd}}{C_d} .$$

PID-Regler mit Differentiator-Pol $\omega_{pd} = 1/\tau_{pd}$ und Integrator-Pol ω_{pi}

Geg.: K_{P} , K_{I} , K, $\tau_{pd} = 1/\omega_{pd}$, ω_{pi} , R_i

$$CTF(s) = K_{P} + \frac{K_{I}}{\omega_{pi} + s} + \frac{K_{D} \cdot s}{1 + \tau_{pd} \cdot s}$$
$$= \frac{(K_{I} + K_{P}\omega_{pi}) + (K_{P}(1 + \omega_{pi}\tau_{pd}) + K_{I}\tau_{pd} + K_{D}\omega_{pi}) \cdot s + (K_{D} + K_{P}\tau_{pd}) \cdot s^{2}}{\omega_{pi} + (1 + \omega_{pi}\tau_{pd}) \cdot s + \tau_{pd} \cdot s^{2}}$$

Für ideale Regelschaltungen sollte der Pol $\omega_{pi} = 0$ sein.

Bei analogen Schaltungen wird ω_{pi} durch die begrenzte Versträkung des OpAmps uvermeidlich erzeugt. Gute und realistische Ergebnisse ezielt man durch wahl der passenden Verstärkung des OpAmp. Diese ist entweder aus dem Datenblatt gegeben oder berechnet sich zu

$$A_{V0} = CTF(s=0) = \frac{K_I}{\omega_{pi}} + K_p$$
(2.5.x)

Man beachte, dass maximale Versträkung des OpAmps auch limitierend in dem Frequenzbereich wirkt, in dem der reale Differentior dominiert.

Bei digitalen Schaltungen ist maximal darstellbare Zahlenbereich begrenzt.

4.1.2.2.16 Frequenz-Kompensation großer kapazitiver Lasten

Große kapazitive Lasten ergeben sich durch große Kondensatoren, aber auch durch Leitungen.

Meistens ist der Ausgang eines OP sehr niederohmig und die durch ihn verursachte Polstelle daher sehr hochfrequent. Mit größer werdender Lastkapazität verschiebt sich die Polstelle der Ausgangsstufe zu tieferen Frequenzen hin und kann bis in die Größenordnung der ersten beiden Polstellen des OPs gelangen. Dann muß mit Stabilitätsproblemen gerechnet werden.

Bildteil (a) zeigt eine Kompensationsmöglichkeit durch einen zusätzlichen Pol bei

$$\omega_{p(a)} = \frac{1}{R_2 C_k}$$

Im Bildteil (b) wird die Wirkung des Pols bei höheren Frequenzen durch eine Nullstelle wieder kompensiert:

$$\omega_{p(b)} = \frac{1}{(R_k + R_2)C_k} \le \omega_{n(b)} = \frac{1}{R_2C_k}$$

Man wählt typischerweise

$$\frac{1}{2} R_{out} \leq R_k \leq R_{out}$$

 $C_k = C_L \frac{R_{out} + R_k}{R_2}$

(a)

Abb. 4.1.2.2.16: Kompensation großer Lastkapazitäten. (a) durch Schaffung eines neuen, dominanten Pols durch Einfügen von C_k , und (b) Kompensation eines Pols des OPs durch Widerstand R_k , der eine zusätzliche Nullstelle erzeugt.

4.1.2.2.17 Invertierer für hohe Spannungsverstärkung und hohes Z_{in} (optional)

Bild 4.1.2.2.17: Verstärkerschaltungen mit idealen OPs: A_V->∞, Z_{in}->∞, Z_{out}->0Ω, Uoffset=0V, (a) mit parasitärer Kapazität; (b) Vermeidung des Problems.

Bild 4.1.2.2.17(a) benötigt für sehr hohe Verstärkungen sehr hohe Widerstände R_2 . Dabei kann die parasitäre Kapazität C_p ein Problem verursachen.

Anstelle des Verstärkers in Bild 4.1.2.2.17(a) wird nun der Verstärker in Bild 4.1.2.2.17(b) eingesetzt. Man dort die Widerstände R_{2a} und R_{2c} als Stromteiler für den Strom I_{2b} betrachten, weil R_{2c} direkt auf Masse und R_{2a} über den virtuellen Kurzschluss auf Massepotential liegt, wenn $U_{offset}=0V$ oder $\approx 0V$.

Die Stromteilerformel liefert

$$I_{2a} = \frac{R_{2c}}{R_{2a} + R_{2c}} I_{2b}$$

oder umgeformt mit $\alpha = \frac{R_{2a} + R_{2c}}{R_{2c}}$

$$I_{2b} = \frac{R_{2a} + R_{2c}}{R_{2c}} I_{2a} = \alpha \cdot I_{2a}$$

Es ist

$$U_{2} = U_{2a} + U_{2b} = R_{2a}I_{2a} + R_{2b}I_{2b}$$

= $R_{2a}I_{2a} + R_{2b}I_{2b} = R_{2a}I_{2a} + R_{2b}\alpha I_{2a} = (R_{2a} + \alpha R_{2b})I_{2a}$
= $(R_{2a} + \alpha R_{2b})(-I_1) = -(R_{2a} + \alpha \cdot R_{2b})\frac{U_1}{R_1} = -\frac{R_{2a} + \alpha \cdot R_{2b}}{R_1}U_1$

- SC / Seite 4-27 -

Daher ist die Verstärkung $A_V = \frac{U_2}{U_1} = -\frac{R_{2a} + \alpha \cdot R_{2b}}{R_1}$

Soll ein äquivalenter Widerstand R_{2,equiv} so definiert werden, dass man schreiben kann A_V =-R_{2,equiv}/R₁, dann ist offensichtlich R_{2,equiv} = R_{2a} + $\alpha \cdot R_{2b}$.

Beispiel 1: Es soll mit der Schaltung in Bild 4.1.2.2.17(a) eine Verstärkung von $Av=10^4$ bei einem Eingangswiderstand von $10K\Omega$ realisiert werden. (Nachfolgend jeweils Formel und Wert!)

Wie groß ist R_1 in Bild 4.1.2.2.17(a)?

 $Z_{in} = 10K\Omega \implies R_1 = Z_{in} = 10K\Omega$

Wie groß ist R_2 in Bild 4.1.2.2.17(a)?

$$A_V = -\frac{R_2}{R_1} \implies R_2 = R_1 A_V = 10 \text{K}\Omega \cdot 10^4 = 100 \text{M}\Omega$$
.

Beispiel 2: Es soll mit der Schaltung in Bild 4.1.2.2.17(b) eine Verstärkung von $Av=10^4$ bei einem Eingangswiderstand von $10K\Omega$ realisiert werden. (Nachfolgend jeweils Formel und Wert!)

Wie groß ist R_1 in Bild 4.1.2.2.17(b)?

 $Z_{in} = 10K\Omega \implies R_1 = Z_{in} = 10K\Omega$

Wie groß muss R_{2,equiv} sein in Bild 4.1.2.2.17(b)?

$$A_V = -\frac{R_{2,equiv}}{R_1} \implies R_{2,equiv} = R_1 A_V = 10 \text{K}\Omega \cdot 10^4 = 100 \text{M}\Omega.$$

Es sei $R_{2a}=R_{2b}=100K\Omega$. Wie groß ist α ?

$$\alpha = -\frac{R_{2,equiv} - R_{2a}}{R_{2b}} = -\frac{10M\Omega - 0.1M\Omega}{0.1M\Omega} = 99$$

Wie muss R_{2c} exakt sein und welchen Wert aus der Standardserie nehmen Sie?

$$\alpha = \frac{R_{2a} + R_{2c}}{R_{2c}} \implies R_{2c} = \frac{R_{2a}}{\alpha - 1} = \frac{100K\Omega}{98} = 1,02K\Omega \implies \text{wir nehmen } 1K\Omega$$

4.1.2.2.18 OPV-Schaltungen mit Diode: Logarithmus, Exponent und Thermometer

Bild 4.1.2.2.18: Analoge Realisierung einer (a) In-Funktion, (b) exp-Funktion.

Für die Diode gelte die Modellgleichung
$$I_D = I_S \exp\left(\frac{U_D}{nu_T}\right) \iff U_D = nu_T \ln\left(\frac{I_D}{I_S}\right)$$

Logarithmierer: In Bild 4.1.2.2.18(a) ergibt sich bei $I_{op}=0$ der Diodenstrom zu $I_D=I_1=U_1/R_1$. Die Spannung am Ausgang des OPs kann den virtuellen Kurzschluss an dessen Eingang zur erreichen, wenn

$$U_2 = -U_D = -nu_T \ln\left(\frac{I_D}{I_S}\right) = -nu_T \ln\left(\frac{U_1}{R_1 I_S}\right)$$

So arbeiten viele Thermometer. Man würde aus obiger Gleichung vermuten, dass die U_D mit der Temperatur steigt, aber das Gegenteil ist der Fall, weil auch der Strom I_S sehr temperaturabhängig ist. Die Durchlassspannung der Siliziumdiode ändert sich um ca. -2mV/K.

Exponenzierer: In Bild 4.1.2.2.18(b) ergibt als Strom durch den Widerstand R₂ bei Iop=0

$$I_2 = I_D = I_S \exp\left(\frac{U_D}{nu_T}\right) = I_S \exp\left(\frac{U_1}{nu_T}\right).$$

Wegen U₂=-I₂R₂. erhält man

$$U_2 = -R_2 I_2 = -R_2 I_D = -R_2 I_S \exp\left(\frac{U_1}{nu_T}\right).$$

Man beachte, dass der Faktor vor der *exp*-Funktion eine Spannung liefern und das Argument der *ln*-Funktion dimensionslos sein muss.

4.1.2.2.19 Analoger Multiplizierer (optional)

Bild 4.1.2.2.19-1: Analoger Multiplizierer.

Mit den nichtlinearen In- und exp-Funktionen kann man nun einen Multiplizierer bauen, der auf dem Prinzip $\ln(a)+\ln(b)=\ln(a \cdot b)$ beruht. Wir müssen also in 3 Stufen die Eingangsgrößen logarithmieren, summieren und zum schluss wieder delogarithmieren.

Bild 4.1.2.2.19-1 zeigt die 4 Schaltungsblöcke zum logarithmieren von U_1 und U_2 , Summieren des Ergebnisses und zur anschliessenden Bildung der exp-Funktion. U_3 und U_4 sind die logarithmierten Eingangsspannungen U_1 und U_2 .

$$U_{3} = -U_{D1} = -nu_{T} \ln\left(\frac{I_{D1}}{I_{S}}\right) = -nu_{T} \ln\left(\frac{U_{1}}{R_{1}I_{S}}\right)$$
$$U_{4} = -U_{D2} = -nu_{T} \ln\left(\frac{I_{D2}}{I_{S}}\right) = -nu_{T} \ln\left(\frac{U_{2}}{R_{2}I_{S}}\right)$$

Die Spannung U₆ ergibt sich aus einer Summation von U₃ und U₄.

$$U_{6} = -\frac{R_{5}}{R_{3}}U_{3} - \frac{R_{5}}{R_{4}}U_{4} \qquad R_{3} = R_{4}: \qquad U_{6} = -\frac{R_{5}}{R_{3}}(U_{3} + U_{4})$$
$$U_{6} = \frac{R_{5}}{R_{3}}nu_{T} \left[\ln\left(\frac{U_{1}}{R_{1}I_{s}}\right) + \ln\left(\frac{U_{2}}{R_{2}I_{s}}\right) \right] = \frac{R_{5}}{R_{3}}nu_{T} \ln\left(\frac{U_{1}U_{2}}{R_{1}R_{2}I_{s}^{2}}\right)$$

Nach der Summenbildung muss die ln-Funktion wieder rückgängig gemacht (also delogarithmiert) werden, wozu sich die exp-Funktion eignet, wozu die Diode D₃ dient:

- SC / Seite 4-30 -

$$U_{7} = -R_{6}I_{D3} = -R_{6}I_{S} \exp\left(\frac{U_{6}}{nu_{T}}\right) = -R_{6}I_{D3} = -R_{6}I_{S} \exp\left(\frac{nu_{T}}{nu_{T}}\frac{R_{5}}{R_{3}}\ln\left(\frac{U_{1}U_{2}}{R_{1}R_{2}I_{S}^{2}}\right)\right)$$
$$= -R_{6}I_{S}\left[\exp\left(\ln\frac{U_{1}U_{2}}{R_{1}R_{2}I_{S}^{2}}\right)\right]^{\frac{R_{5}}{R_{3}}} = -R_{6}I_{S}\left(\frac{U_{1}U_{2}}{R_{1}R_{2}I_{S}^{2}}\right)^{\frac{R_{5}}{R_{3}}}$$

Setzt man R₅=R₃ ergibt sich

$$U_{7} = -R_{6}I_{S}\frac{U_{1}U_{2}}{R_{1}R_{2}I_{S}^{2}} = -\frac{R_{6}}{R_{1}R_{2}I_{S}}U_{1}U_{2}$$

Setzt man R₃=2R₅ ergibt sich das geometrische Mittel, das als $\sqrt{U_1U_2}$ definiert ist:

$$U_{7} = -R_{6}I_{S}\sqrt{\frac{U_{1}U_{2}}{R_{1}R_{2}I_{S}^{2}}} = -\frac{R_{6}}{\sqrt{R_{1}R_{2}}}\sqrt{U_{1}U_{2}}$$

Mit R₃=2R₅ und $R_6 = \sqrt{R_1R_2}$ erhält man $U_7 = -\sqrt{U_1U_2}$.

Die Schaltung in Bild 4.1.2.2.19-2 scheint auf den ersten Blick eine Vereinfachung der Schaltung in Bild Bild 4.1.2.2.19-1 zu sein. Sie summiert jedoch die Ströme I_{D3} und I_{D4} im Knoten n₆, nachdem die logarithmierten Größen U₃ und U₄ durch die Dioden D₃ und D₄ bereits vor der Summation wieder delogarithmiert wurden. Die Funktion dieser Schaltung ist also eine einfache Addition.

Bild 4.1.2.2.19-2: Analoger Addierer. Die Schaltung ist nur scheinbar ähnlich der in Bild 4.1.2.2.19-1, wobei der mittlere Schaltungsblock eingespart wurde. De facto werden die Größen U3 und U4 schon der vor Summation in Knoten n₆ in die delogarithmierten Größen ID3 und I_{D4} umgesetzt.

4.1.2.3 Der ideale OP in der Grundschaltung als Nichtinvertierer

4.1.2.3.1 Idealer OP als Nichtinvertierer

Bild 4.1.2.3.1: OP als Nichtinvertierer, (a) allgemein, (b,c,d) Variationen mit A^{*}=1.

Bild 4.1.2.3.1 (a) zeigt den idealen OP als Nichtinvertierer, was daran zu erkennen ist, dass das externe Eingangssignal U_{ip} auf den nichtinvertierenden Eingang geführt wird. Für A_V-> ∞ muss U_{in}=0V folgen und somit wegen U_{ip}=U_{in}+U_{im} erhalten wir den virtuellen Kurzschluss mit U_{im}=U_{ip}. Der Spannungsteiler Z₁, Z₂ bildet das Rückkopplungsnetzwerk mit der Übertragungsfunktion

$$k = \frac{Z_1}{Z_1 + Z_2}.$$

Wegen $U_{ip} = U_{im} = k U_{out}$ folgt

$$U_{out} = \frac{U_{ip}}{k} = \frac{Z_1 + Z_2}{Z_1} U_{ip} = \left(1 + \frac{Z_2}{Z_1}\right) U_{ip} \quad \Leftrightarrow \quad U_{out} = A_v^+ U_{ip} \text{ mit } A_v^+ = 1 + \frac{Z_2}{Z_1}.$$

Die Übertragungsfunktion des Nichtinvertierers unterscheidet sich vom Invertierer nur durch das Vorzeichen des Faktors Z_2/Z_1 und die Addition von 1. Die kleinstmögliche Verstärkung für $Z_2/Z_1=0$ beträgt also $A_{\nu}^+((Z_2/Z_1)=0)=1$.

Diesen Extremfall kann man auf drei Arten erzeugen:

Bild 4.1.2.3.1(a) zeigt $Z_1 \rightarrow \infty$, Bildteil (b) zeigt $Z_2 \rightarrow 0$ und Bildteil (c) zeigt $Z_1 \rightarrow \infty$ und $Z_2 \rightarrow 0$. Letzteres wird oft als Bufferverstärker verwendet, denn mit dem Nichtinvertierer erreicht man extrem hohe Eingangswiderstände

 $Z_{in} \rightarrow \infty$.

De facto ist $Z_{in} \rightarrow \infty$ nicht möglich. Bei einem bipolaren Eingang ist Z_{in} hoch, bei einem FET-Eingang sehr hoch (typisch um 10¹⁵ Ohm.)

- SC / Seite 4-32 -

4.1.2.3.2 Anwendung des Nichtinvertierers als Audioverstärker

Bild 4.1.2.3.2: Typischer Audioverstärker, (a) AC-, (b) DC-Plan, (c) kombiniert (a) und (b)

Eine typische Grundschaltung des OP als Wechselspannungsverstärker für Audio-Signale zeigt Bild 4.1.2.3.2:

Nutzleistung: Wechselspannungsverstärker

Bildteil (a) demonstriert die Nutzschaltung zur Verstärkung des Wechselspannungssignals, wobei alle Kapazitäten als Kurzschlüsse behandelt werden. In diesem Falle ist der Widerstand R_2 als einstellbares Potentiometer ausgelegt, so dass die Verstärkung einstellbar ist gemäß

$$A_{V,AC} = 1 + \frac{R_2}{R_1}$$

Arbeitspunkteinstellung

Bildteil (b) demonstriert die Einstellung des Arbeitspunktes mit nur einer Spannungsquelle. Die Koppelkapazitäten C_{k1} und C_{k2} isolieren den OP DC-mäßig von der Außenwelt. Die Widerstände R3, R4 hängen $U_{in,DC}$ bei $V_{DD}/2$ auf. Da die DC-Spannung $U_{in,DC}$ nur mit dem Faktor 1 verstärkt werden (und keinesfalls von R_2/R_1 abhängen) darf, wird mit der Koppelkapazität C_{k3} der Widerstand R1 DC-mäßig deaktiviert. R2 wird wegen $R_2 << Z_{in}$ des OPs vernachlässigt. Damit haben wir eine DC-Verstärkung von 1 und somit $U_{out,DC}=U_{in,DC}\approx V_{DD}/2$.

Gesamtschaltung

Bildteil (c) zeigt die Gesamtschaltung als lineare Überlagerung der Schaltungen in den Bildteilen (a) und (b). man beachte, dass die AC-Verstärkung wegen $A_{V,AC}^* \ge 1$ nicht Null werden kann. Für die meisten Audioverstärker ist das wegen der kleinen Eingangs- und großen Ausgangsleistungen kein Problem.

4.1.2.4 Kombinierter Invertierer und Nichtinvertierer

Nach dem Gesetz der linearen Superposition (LSP) dürfen Ströme und Spannungen in linearen Netzwerken mit mehreren unabhängigen Strom- und Spannungsquellen folgendermaßen berechnet werden:

Alle voneinander unabhängigen Quellen bis auf eine werden auf Null gesetzt, die partielle Lösung für die Quelle \neq 0 berechnet und anschließend alle partiellen Lösungen summiert.

Wir setzen bei dem Verstärker in Bild 4.1.2.4 für die Spannung U₂=0V und erhalten

$$U_3(U_1, U_2 = 0V) = \frac{Z_1 + Z_2}{Z_1} U_1 = \left(1 + \frac{Z_2}{Z_1}\right) U_1.$$

Wir setzen bei dem Verstärker in Bild 4.1.2.4 für die Spannung U1=0V und erhalten

$$U_3(U_1 = 0V, U_2) = -\frac{Z_2}{Z_1}U_2$$

Die Schaltung mit OP im Bild 4.1.2.4 ist ein lineares System. Daraus folgt

 $U_3(U_1, U_2) = U_3(U_1, U_2=0V) + U_3(U_1=0V, U_2)$.

oder

$$U_3 = \frac{Z_1 + Z_2}{Z_1} U_1 - \frac{Z_2}{Z_1} U_2$$

4.1.2.5 Diff.-In / Single-Endet-Out Verstärker mit isolierter, treibender Quelle

Bild 4.1.2.5: Diff-in Verstärker mit idealem OP: $A_{V,OP,diff} \rightarrow \infty$, $Z_{in} \rightarrow \infty$, $Z_{out}=0\Omega$, $U_{off}=0V$; gesteuert mit (a) einer Stromquelle, (b) einer Spannungsquelle.

Die folgenden Passagen sind in ähnlicher Form einer Prüfung entnommen. Sie können zu Übungszwecken versuchen, die Antworten zu den Fragen erst einmal abzudecken und selbst zu beantworten.

Zu Bildteil 4(a): Stromsteuerung mit I_{in} bei U_{ref}=0V

Geben Sie den Maschenstrom IM1 in Bild 4(a) als Funktion von Iin an.

 $I_{M1} = I_{in}$

Wie groß ist der Strom, der über den virtuellen Kurzschluss des OPs (von $U_{ip} \rightarrow U_{im}$) fließt?

$$I_{vk} = 0$$

Wie groß ist demnach der Maschenstrom I_{M2} als Funktion von I_{M1}?

 $\mathbf{I}_{M2} - \mathbf{I}_{M1} = \mathbf{I}_{vk} = \mathbf{0} \qquad \Longrightarrow \qquad \mathbf{I}_{M2} = \mathbf{I}_{M1}$

Wie groß ist - idealerweise - die Spannung zwischen den OP-Eingängen Uip und Uim?

U_{ip} = U_{im} wegen virtuellem Kurzschluss

Berechnen Sie U_{out} erst als $f(I_{M2}, R_x, ...)$ und dann als $f(I_{in}, R_{\#}, ...)$ für $\#_{\in} \{2, 4\}$.

 $U_{out} - U_{ref} = (R_2 + R_4) I_{M2}$

und folglich

 U_{out} = (R_2 + R_4) I_{in} + U_{ref}

Zu Bildteil 4(b): Spannungssteuerung mit Uin. bei Uref=0V

Welche Impedanz Zin sieht die Quelle Uin in Bild 4(b)?

 $\mathbf{Z}_{\text{in}} = \mathbf{R}_1 + \mathbf{R}_3$

Welchen Strom I_{in} liefert die Quelle U_{in} als $f(R_x)$?

 $I_{in} = U_{in} / Z_{in} = U_{in} / (R_1 + R_3)$

Berechnen Sie U_{out} erst als $f(I_{in},R_x,...)$ und dann als $f(U_{in},R_x,...)$, für U_{ref}=0V und $x \in [1,2,3,4]$.

 $U_{out} = (R_2 + R_4) I_{in} = U_{in} (R_2 + R_4) / (R_1 + R_3)$

Typisch ist $R_3=R_1$ und $R_4=R_2$. Wie groß ist U_{out} für diesen Fall als f(U_{in}, R₁, R₂)?

 $U_{\rm out}$ = $U_{\rm in}$ $(R_2$ + $R_2)$ / $(R_1$ + $R_1)$ = $U_{\rm in}$ R_2 / R_1

Weitere Überlegungen

Geben Sie die Spannungen Uip, Uim als Funktion von Iin an

 $U_{ip} = I_{in} R_4 + U_{ref}$

 $U_{im} = U_{ip} = I_{in} R_4$

Geben Sie die Spannung U2 als Funktion von Iin an

 $U_3 = I_{in} (R_3 + R_4)$

Situation für $U_{ref} \neq 0V$:

Typischerweise ist nicht $U_{ref} = 0V$, sondern $U_{ref} = \frac{1}{2}V_{DD}$. Geben Sie U_{out} als $f(U_{in},R_1,..,R_4,U_{ref})$ für beliebige $U_{ref} \neq 0V$ an. (Richtige Antwort 1P, richtige Begründung 2P)

 $U_{out} = U_{ref} + U_{in} (R_2 + R_4) / (R_1 + R_3)$ (1P)

Alle Spannungen U_x durch U_x-U_{ref} ersetzen, wobei die Differenzspannung $U_{in}=U_2-U_1$ sich nicht veranädert, da U_{ref} sowohl von U_1 als auch von U_2 abgezogen wird und die Differenz konstant bleibt. (2P)

4.1.2.6 Diff-In / 1-Out Verstärker mit zwei unabhängigen Eingangsspannungen U_1, U_2

Bild 4.1.2.6-1: Diff-In- / Single-Ended-Out- Verstärker

Die Spannungsquelle U₂ "sieht" gegen Masse die Eingangimpedanzen $Z_{in2} = R_3 + R_4$.

Das Verhalten des Eingangs U₁ ist problematisch, denn $I_{R1} > 0$, wenn U₁>U_{im} (wobei U_{im}=U_{ip}) uns sonst kleiner Null. Der Eingang U₁ ist also eine "unangenehme Last". Darum schalten wir ihm im nächten Schritt einen Diff-In / Diff-Out Verstärker vor (siehe unten).

Es sei $U_{ref} = 0V$. Dann ist

 $U_{ip} = U_2 R_4 / (R_3 + R_4)$ und

$$\mathbf{U}_{out} = -\frac{R_2}{R_1}U_1 + \frac{R_1 + R_2}{R_1}(U_{ip} + U_{off}) = -\frac{R_2}{R_1}U_1 + \frac{R_4}{R_1}\frac{R_1 + R_2}{R_3 + R_4}U_2 + \frac{R_1 + R_2}{R_1}U_{off} \quad (4.1.2.6.1)$$

Typischerweise nimmt man an, dass $R_3 = R_1$, $R_4 = R_2$, und $U_{off} = 0$ V, so dass

$$\mathbf{U}_{out} = -\frac{R_2}{R_1}U_1 + \frac{R_2}{R_1}U_2 + \frac{R_1 + R_2}{R_1}U_{off} = -\frac{R_2}{R_1}(U_1 - U_2) + \frac{R_1 + R_2}{R_1}U_{off} \xrightarrow{U_{off} = 0V} - \frac{R_2}{R_1}(U_1 - U_2)$$

Die differentielle Verstärkung ist dann

$$A_{V,diff} = -R_2/R_1$$
 (4.1.2.6.2)

Für $U_{ref} \neq 0V$ gelten obige Überlegungen, wenn man mit den Spannungen U'=U-U_{ref} arbeitet, weil dann mit U'_{ref}=0 die oben berechnete Situation gegeben ist: Aus

$$\mathbf{U_{out}} - \mathbf{U_{ref}} = \frac{R_2}{R_1} \left(U_1 - U_{ref} - (U_2 - U_{ref}) \right) = -\frac{R_2}{R_1} \left(U_1 - U_2 \right) \quad \text{folgt}$$

$$\mathbf{U_{out}} - \mathbf{U_{ref}} = -\frac{R_2}{R_1} \left(U_1 - U_2 \right) + \frac{R_1 + R_2}{R_1} U_{off} \xrightarrow{U_{off} = 0V}}{-\frac{W_{off} - 0V}{R_1}} - \frac{R_2}{R_1} \left(U_1 - U_2 \right) \quad (4.1.2.6.3)$$

Bei nur einer Versorgungsspannung (V_{DD}) setzt man in der Regel $U_{ref} = \frac{1}{2}V_{DD}$.

- SC / Seite 4-37 -

Bild 4.1.2.6-2:

Diff-In- / Single-Ended-Out- Verstärker, U_{ref} einstellbar mit niederohmigem Puffer. Es gilt $R_3=R_1$ und $R_4=R_2$.

Wenn es nicht notwendig ist U_{ref} variabel zu halten, kann man die Spannungsquelle U_{ref} mit Ausgangswiderstand R_4 durch einen Spannungsteiler ersetzen. Es gelte weiterhin $R_3=R_1$ und $R_4=R_2$.

Bild 4.1.2.6-3: Diff-In- / Single-Ended-Out- Verstärker. U_{ref} und R_4 in Bildteil (a) werden in Bildteil (b) durch den Spannungsteiler R_{4a} , R_{4b} ersetzt.

Gemäß Spannungsteiler-Formel in Kap. 1 ergibt sich:

$$a = \frac{R_{4a}}{R_{4a} + R_{4b}} = \frac{V_{DD} - U_{ref}}{V_{DD} - V_{SS}}, \quad b = \frac{R_{4b}}{R_{4a} + R_{4b}} = \frac{U_{ref} - V_{SS}}{V_{DD} - V_{SS}}.$$

Aus
$$R_4 = R_{4a} \parallel R_{4b} = \frac{R_{4a}R_{4b}}{R_{4a} + R_{4b}} = aR_{4b} = bR_{4a}$$
 folgt

$$R_{4a} = \frac{R_4}{b} = \frac{V_{DD} - V_{SS}}{U_{ref} - V_{SS}} R_4 \quad \text{und} \quad R_{4b} = \frac{R_4}{a} = \frac{V_{DD} - V_{SS}}{V_{DD} - U_{ref}} R_4.$$

Es ist allerdings fraglich, ob man mit dem Spannungsteiler R4a, R4b das erforderlich genaue Matching $R_4 = R_2$ erreicht.

- SC / Seite 4-38 -

4.1.2.7 Diff-In / Diff-Out – Buffer mit zwei OPs

Das Bild oben zeigt einen Diff-In- / Diff-Out Pufferverstärker, der wegen seiner günstigen Einund Ausgangsimpedanzen häufig als Vorverstärker zum oben vorgestellten Diff-In- / Single-Ended-Out Verstärker verwendet wird.

Die Eingangimpedanzen für die Spannungen U_1 und U_2 gegen Masse sind die Eingangsimpedanzen der OPs, also

 $\mathtt{Z}_{\texttt{inl}} \rightarrow^{\infty}$ und $\mathtt{Z}_{\texttt{inl}} \rightarrow^{\infty}$.

Die Ausgangsimpedanzen Z_{out3} , Z_{out4} , mit denen werden die Spannungen U_3 und U_4 zur Verfügung gestellt werden, sind die Ausgangsimpedanzen der OPs, die durch den Rückkopplungseffekt weiter verringert werden:

$\mathbf{Z}_{\text{out3}} = \mathbf{0}\Omega$ und $\mathbf{Z}_{\text{out4}} = \mathbf{0}\Omega$.

Wegen der virtuellen Kurzschlüsse an den Eingängen der OPs ergibt sich

$$\mathbf{I_{R2}} = \frac{U_1 - U_2}{R_4} \, .$$

Der Strom durch I_{R4} mus auch durch R1 und R3 fließen, so dass

$$U_{3} - U_{4} = \frac{R_{3} + R_{4} + R_{5}}{R_{4}} (U_{1} - U_{2}) \qquad \Leftrightarrow \qquad A_{V} = \frac{R_{3} + R_{4} + R_{5}}{R_{4}}.$$

Für den typischen Fall R₅=R₃ erhalten wir die Verstärkung

$$A_V = \frac{2R_3 + R_4}{R_4} = 1 + \frac{2R_3}{R_4} \ .$$

4.1.2.8 Diff-In / 1-Out – Instrumentation Amp., Voltage-Feedback (VFB)

Die Eigenschaften der beiden zuvor berechneten Schaltungen erhält man durch Ihre Kombination: Günstige Eingangsimpedanzen und Umsetzen von differentiell auf "singleended". Der vertikale Strich im Bild trennt die beiden zuvor vorgestellten Stufen. Es ist

 $\mathtt{Z}_{\texttt{in1} \rightarrow \texttt{m}}$, $\mathtt{Z}_{\texttt{in2} \rightarrow \texttt{m}}$ and $\mathtt{Z}_{\texttt{out} \rightarrow \textbf{0}}$,

$$\mathbf{A_{v}} = \mathbf{A_{v1}} \ \mathbf{A_{v2}} = -\frac{2R_3 + R_4}{R_4} \cdot \frac{R_2}{R_1}$$

Für U_{ref}≠0V arbeiten wir wieder mit den Spannungen U'=U-U_{ref}, womit U'ref =0V wird.

$$U_{out} - U_{ref} = -\frac{2R_3 + R_4}{R_4} \cdot \frac{R_2}{R_1} (U_1 - U_{ref} - ((U_2 - U_{ref}))) = -\frac{2R_3 + R_4}{R_4} \cdot \frac{R_2}{R_1} (U_1 - U_2)$$

und somit

$$|A_{V}| = \left| \frac{U_{out} - U_{ref}}{U_{1} - U_{2}} \right| = \frac{2R_{3} + R_{4}}{R_{4}} \cdot \frac{R_{2}}{R_{1}} \ge 1 \qquad \Leftrightarrow \qquad R_{4} = \frac{2R_{3}}{\frac{R_{1}}{R_{2}} |A_{V}| - 1} \cdot \frac{R_{1}}{R_{2}} |A_{V}| = \frac{2R_{3}}{R_{1}} \cdot \frac{R_{1}}{R_{2}} |A_{V}| = \frac{R_{1}}{R_{2}} |A_{V}| = \frac{R_{1}}{R_{2}} |A_{V}| = \frac{R_{1}}{R_{2}} \cdot \frac{R_{1}}{R_{2}} |A_{V}| = \frac{R_{1}}{R_{2}} \cdot \frac{R_{1}}{R_{2}} \cdot \frac{R_{1}}{R_{2}} = \frac{R_{1}}{R_{1}} \cdot \frac{R_{1}}{R_{2}} \cdot \frac{R_{1}}{R_{2}} \cdot \frac{R_{1}}{R_{2}} = \frac{R_{1}}{R_{1}} \cdot \frac{R_{2}}{R_{1}} \cdot \frac{R_{2}}{R_{1}} = \frac{R_{1}}{R_{2}} \cdot \frac{R_{1}}{R_{2}} \cdot \frac{R_{2}}{R_{1}} \cdot \frac{R_{2}}{R_{1}} \cdot \frac{R_{2}}{R_{1}} = \frac{R_{1}}{R_{2}} \cdot \frac{R_{2}}{R_{1}} \cdot \frac{R_{2}}{R_$$

Dieser OP wird als sogenannter Instrumentationsverstärker angeboten, wobei typischerweise R₂ extern ausgeführt wird, so dass der Anwender die Verstärkung manipulieren kann.

Fragen:

- (1) Was passiert, wenn der Anwender R₄ einfach weglässt (also $R_4 \rightarrow \infty$)?
- (2) Darf man R₄ kurzschließen (R₄= 0Ω)?
- (3) Typischerweise ist R₁=R₂. Welcher Verstärkungsbereich ist dann mit R₄ einstellbar?

4.1.2.9 Diff-In / 1-Out – Instrumentation Amp., Current-Feedback (optional)

Großes Av bei hohen Frequenzen! Die Verstärkung ist wie bei der Spannungsrückkopplung

$$|A_{V}| = \left|\frac{U_{out} - U_{ref}}{U_{1} - U_{2}}\right| = \frac{2R_{3} + R_{4}}{R_{4}} \cdot \frac{R_{2}}{R_{1}} \quad \Leftrightarrow \qquad R_{4} = \frac{2R_{3}}{|A_{V}|(R_{1} / R_{2}) - 1}$$

Für U_{ref} \neq 0V : $U_{out} = \frac{2R_{3} + R_{4}}{R_{4}} \cdot \frac{R_{2}}{R_{1}} (U_{1} - U_{2}) + U_{ref}$

Funktion: Wegen der virtuellen Kurzschlüsse am Eingang von OP₁ und OP₂ liegt die Spannung an R₅ fest auf $U_{R5}=U_{bias}$. Damit ist der Querstrom durch Q₁ und Q₂ gegeben mit Ic₁=Ic₂=U_{R5}/R₅. Mit diesen fest vorgegebenen Strömen ist klar, dass UBE1=UBE2 und somit die Spannung an $R_{4,ext}$ gegeben ist mit $U_{R4,ext} = (U_1 - U_{BE1}) - (U_2 - U_{BE2}) = U_1 - U_2$. Der Strom durch $R_{4,ext}$ ist damit I_{R4,ext} = U_{R4,ext} / R_{4,ext} = (U₁-U₂) / R_{4,ext}. Er muss über die Widerstände R₃ weiterfließen und verursacht zusätzlich zur Spannung UR2,ext einen Spannungsabfall von 2R3·IR4,ext. Die differentielle Ausgangsspannung der ersten Stufe ergibt sich somit zu $U_3-U_4 = (R_3+R_{4,ext}+R_3) \cdot I_{R_{4,ext}} = (R_{4,ext}+2R_3) \cdot U_{R_{4,ext}} / R_{4,ext} = (1+2R_3/R_{4,ext}) \cdot (U_1-U_2)$. Die Ströme durch Q₁, Q₂ fließen über R₂ ab und verursachen dort eine Verschiebung des Gleichtaktsignals, nicht aber des Differenzsignals, welches die nächste Stufe steuert.

Problem: Da $U_{CEx} \ge 0.3V$ (x=1,2) sein muss ergibt sich für $U_{BEx} = 0.7V$ die Forderung $U_{BC1} \ge U_1 - 0.4V$ und $U_{BC2} \ge U_2 - 0.4V$. Das bedeutet für das Gleichtakt-Eingangssignal $U_1 \approx U_2 \approx U_{in,cm} \ge V_{CC} - U_{R5} + 0.4V = V_{CC} - U_{bias} + 0.4V$. Ubias verringert also den CMR.

- SC / Seite 4-41 -

Stufe 1: A_{V1} = 1+2R₃/R_{4,ext}

Stufe 2: $A_{V2} = -R_2/R_1$

Bild 4.1.2.9(b): Beispiel $U_1 = U_2 = 3V: \rightarrow \Delta U_{in} = 0 \rightarrow \Delta U_{out} = 0$.

Bild 4.1.2.9(c): Beispiel $U_1 = 3, 3V, U_2 = 2, 7V: \rightarrow \Delta U_{in} = 0, 6V \rightarrow \Delta U_{out} = 1, 2V = (1 + 2R_3/R_4).$

4.1.2.10 Vollständig differentieller Verstärker

(c) Eingangssignale $U_1 \neq 0V$ und $U_2=0V$, (d) Ausgangsspannungen $U_3=-U_1$ und $U_4=U_1$.

In Bildteil (a) gilt wegen des virtuellen Kurzschlusses zwischen den Eingangsklemmen der OPs $U_{ip} = U_{im} = U_x$, und ebenso gilt in Bildteil (b) $U_{ip} = U_{im}$.

Man mache sich bewusst: Wenn in beiden Bildteilen gleiche $U_1,...,U_4$ und gleiche U_{ip} , U_{im} bei gleichen R_1 , R_2 gegeben sind, müssen sich diese Schaltungen notwendigerweise identisch verhalten. In der Regel ist die Schaltung in Bildteil (a) einfacher zu berechnen, weil OP₁ und OP₂ völlig unabhängig voneinander berechnet werden können. Dagegen ist die Schaltung in Bildteil (b) leichter zu realisieren (z.B. mit dem LTC6406 von Linear Technology), wenn sich die Ausgangsspannungen U₃, U₄ – wie inBildteil (d) dargestellt – symmetrisch um eine ruhende Ausgangs-Gleichtaktspannung (Common Mode Output Voltage, U_{ocm}) bewegen sollen. Also:

Wir berechnen die Schaltung in Bildteil (a) und übertragen die Resultate auf die Schaltung in Bildteil (b).

Die differentielle Verstärkung $A_{V,diff} = (U_2-U_4)/(U_1-U_3)$ in Bildteil (a) erhält man zu

Und somit ist

$A_{V,diff} = -R_2/R_1$

Die differentielle Verstärkung im Beispiel der Bildteile (c) und (d) ergibt sich zu

 $A_{V,diff} = (U_3 - U_4) / (U_1 - U_2) = (-U_1 - U_1) / (U_1 - 0) = -2.$

Diese differentielle Schaltung ist besonders immun gegen Gleichtaktkstörungen auf den Eingangssignalen. Sie wird daher häufig im Eingang von Messverstärkern und A/D-Wandlern verwendet. Die Umwandlung von singleended auf differentielle Signale, wie in den Bildteilen (c) und (d) gezeigt, findet man oft im Eingang von Analog / Digital Konvertern (ADC), da man hier gerne differentielle Signale hat.

Einstellung der Gleichtaktspannung Uocm am Ausgangs der Schaltung: Die Spannung

 $U_{ocm,ist} = \frac{1}{2}(U_3 + U_4)$

Kann leicht mit zwei gleichgroßen Widerständen erzeugt werden, wie oben in Bildteil (b) angedeutet. Zur ebenfalls ruhenden Spannung des Common-Mode-Feedback (CMFB) Eingangs wird die Differenzsspannung UB=Uocm-UCMFB als treibende Spannungsquelle benötigt. Günstig lässt sich UB mit geschalteten Kapazität realisieren. Besonders vereinfachend wirkt die Tatsache, dass alle drei Spannungen, UB, Uocm, und UCMFB, konstant sein sollten und daher keine Erwägungen bzgl. Bandbreite notwendig sind..

Messbrückenschaltung:

PS: Dieser Verstärkertyp eignet sich auch gut als Messverstärker. Dazu werden die beiden Widerstände R1 in R1a, R1b und Widerstände R2 in R2a, R2b unterteilt. Ferner soll eine zu messende Größe (z.B. Wärme, Feuchte,...) entweder nur R_{1a} oder nur R_{1b} beeinflussen, so dass $R_{1a} = (1+\alpha) \cdot R_{1b}$ wird mit $|\alpha| \ll 1$.

Warum brauchen wir vollständig differentielle Verstärker?

- Um ein differentielles Signal zu puffern,
- Als Messbrücke in der Messtechnik,
- Um ein "singled-ended" Signal differenziell zu machen, denn das + ist störfester (z.B. weniger Angriffsfläche für Magnetfeld-Durchgriff), und
 - + viele A/D-Wandler arbeiten genauer mit differentiellem Eingang

4.1.2.11 Vollständig differentieller InstrumentenVerstärker: Umwandlung 1in → 2out

Bild 4.1.2.11: Umsetzung einer massebezogenen in eine differentielle Spannung. Die grün gestrichelte Box in Bildteil (a) ist der Verstärker, der Rest Beschaltung vn außen. Bildteil (b) zeigt die massebezogene Eingangsspannung $U_{in}=U_{ip}$ und die gewählte Bezugsspannung U_{im} . Bildteil (c) das differentielle Ausgangssignal im Bereich 0,25-2,75V.

Im Bild 4.1.2.11 soll als Anwendungsbeispiel ein massebezogenes Signal von einer Schaltungs mit Versorgungsspannungen $V_{EE0}=0V - V_{CC3}=5V$ in ein differentielles Signal mit den Versorgungsspannungen $V_{EE0}=0V - V_{CC3}=3V$ überführt werden. Spannungen müssen am Eingang 0,5V und am Ausgang 0,25 von V_{EE0} und V_{CCX} entfernt bleiben.

Der Eingangsspannungsbereich beträgt $U_{in,max} = 4,5V$ $U_{in,min} = 0,5V$

In diesem Fall legen wir den invertierenden Eingang U_{im} in die Mitte des Eingangsspannungsbereiches, was die beiden Widerstände R_5 bewerkstelligen:

$$U_{im} = \frac{1}{2} (U_{in,min} + U_{in,max}) = \frac{1}{2} (0.5 + 4.5) V = 2.5 V.$$
 => $U_{im} = 2.5 V.$

Der verfügbaren Ausgangsspannungsbereich beträgt $U_{out,max} = 3V - 0.25V = 2.75V$ $U_{out,min} = 0V + 0.25V = 0.25V$ Einstellung der Verstärkung A_V: Die <u>benötigte</u> Gesamtverstärung ist

$$|A_{V}| = \frac{2 \cdot (U_{out, \max} - U_{out, \min})}{U_{in, \max} - U_{in, \min}} = \frac{2 \cdot (2,75V - 0,25V)}{4,5V - 0,5V} = 1,25$$
 => $A_{V} = 1,25V$

Der Faktor 2 im Zähler berücksichtigt die Tatsache, dass das Ausgangsignal differentiell ist. *R*⁴ berechnet sich mit der <u>eingestellten</u> Gesamtverstärkung zu

Einstellung des Common-Mode Ausgangsspannung U_{ocm} : Man legt den Mittelwert (engl. Common Mode) des differentiellen Ausgangssignals in die Mitte des verfügbaren Spannunsbereiches, also

$$U_{ocm} = \frac{1}{2} (U_{mout,min} + U_{out,max}), \text{ hier: } = \frac{1}{2} (0,25+2,75) V = 1,5V. \implies U_{ocm} = 1,5V.$$

Das das Signal wird vom gekauften Verstärkerbaustein mit den eingebauten (build-in) Werten $U_{ocm,bi}=\frac{1}{2}(V_{CC}+V_{EE})$ und der Ausgangsimpedanz $U_{ocm,bi}=\frac{1}{2}R_x$ zur Verfügung gestellt. Im Beispiel: $R_{ocm,bi}=500$ K Ω . Da der Verstärker mit $V_{CCS}=5$ V versorgt werden muss, (um den Eingangsspannungsbereich abdecken zu können,) müssen wir U_{ocm} mit dem externen Widerstand R_y von $U_{ocm,bi}=2,5$ V auf $U_{ocm}=1,5$ V drücken. Das ist ein Teilerverhältnis von

$$\alpha = \frac{U_{ocm}}{U_{ocm,bi}} = \frac{1,5V}{2,5V} = 0,6 \text{ und liefert somit wegen } R_{ocm} = \frac{1}{2}R_x = 500 \text{K}\Omega$$

$$R_{y} = R_{ocm,bi} \frac{\alpha}{1-\alpha} = 500K\Omega \frac{0,6}{1-0,6} = 500K\Omega \cdot 1,5 = 750K\Omega \implies R_{y} = 750K\Omega$$

Oft wird an den Pin U_{ocm} auch eine Kapazität C_{ocm} angeschlossen, um Rauschen auf den Versorgungsleitungen (V_{CC} , V_{EE}) von diesem Eingang fern zu halten.

- SC / Seite 4-46 -

4.2 Der reale Operationsverstärker

Parameter	Akronym	TL081M	OP07	LM7301	Dim.	Kommentare
	im Unterricht	V _{CC} =±15V	V _s =±15V	Vs=5V		
Supply Voltage, Maximum	$\begin{array}{l} max\{V_S\},\\ max\{V_{cc}\} \end{array}$	36	44	32	V	maximale Betriebs- spannung (V ⁺ -V ⁻)
Supply Voltage, Minimum	min{Vs}, min{Vcc}	7	6	1,8	V	minimale Betriebs- spannung (V ⁺ - V ⁻)
Common Mode Rejection Ratio	CMRR	86	123	88	dB	
Power Supply Rejection Ratio	PSRR	86	20dB log(1/5E-6) 106	104	dB	
Large Signal		200	500	71	V/mV	
Diff. Volt. Gain	Av	106	114	97	dB	at $R_L \rightarrow \infty$
Gain-Bandwidth Product	GB	3	0,6	4	MHz	$R_L > 1 M\Omega$
Input Offset Voltage	Uoff	3	0,03	0,03	mV	
Input Bias Current	IB	0,03	±1,2	-40 90	nA	DC Eingangsstrom (von bis)
Slew Rate	SR	13	0,3	1,25	V/µs	at $R_L \rightarrow \infty$

Tabelle 4.2: Typische Parameter dreier handelsüblicher OPs bei T= 25° C und R_L-> ∞

Tab. 4.2 zeigt Daten, die aus den Datenblättern einiger aktueller OPs zusammengetragen wurden (siehe auch handschriftliche Blätter).

4.3 Techniken zur Kompensation der Offset-Spannung (optiona)

4.3.1 Justieren einer Kompensationsspannung

Bild 4.3.1:

Kompensieren der Offset-Spannung durch ein Trimmers.

Bild 4.3.1 zeigt wie man die Offset-Spannung mit Hilfe des Trimmers R_{p2} kompensieren kann. Da Offset-Spannungen im Bereich von 1-50mV liegen, wird der mit dem Trimmer einstellbare Bereich durch die Widerstände Rp1 und Rp3 begrenzt, so dass die Einstellung von wenigen mV möglich wird.

Nachteilig: Handarbeit ist nur beim Einbau diskreter OPs möglich und bei Massenproduktion von Schaltungen wenig hilfreich. Viele Schaltungen enthalten dutzende von Operationsverstärkern die sich gegenseitig beeinflussen. Eine Einstellung per Hand wird in solchen Fällen schwierig oder unmöglich.

4.3.2 Chopper-Stabilisierung

Bild 4.3.2:(a) Chopper-stabilisierter Verstärker, (b) Ausgangssignal im Zeitbereich,
(c) 1/f-Rauschen im Frequenzbereich

Mit der Chopper-Stabilisierung eliminiert man niederfrequentes Rauschen einschließlich der Offsetspannung, welche als Rauschen bei der Frequenz 0Hz aufgefaßt werden kann.

Bild 4.3.2(a) zeigt einen Verstärker mit differentiellem Eingang und differentiellem Ausgang. Diesen Verstärker zu choppen (deutsch: "plötzlich umschlagen") bedeutet:

- Während der Taktphase φ₁ sind die zu φ₁ gehörigen Schalter leitend, der Verstärker arbeitet wie ein gewöhnlicher, differentieller Verstärker.
- Während der Taktphase φ₂ sind die zu φ₂ gehörigen Schalter leitend, das zu verstärkende Signal wird vor und nach dem Verstärker durch Vertauschen der Leitungen mit dem Faktor (-1) multipliziert.

Wegen der zweifachen Umkehrung $(-1)^*(-1)=+1$ verstärkt die Baugruppe das Nutzsignal in beiden Schalterstellungen identisch. Die Offsetspannung erfährt jedoch nur eine Umkehrung, so daß das Ausgangssignal um den Wert $\pm A_V U_{off}$ springt. Das niederfrequente Rauschen $U_{noise}(t)$ wird also mit einer Rechteckspannung der Frequenz f_{chop} multipliziert. Ein Rechtecksignal setzt sich gemäß Fourier aus Grundwelle und Oberwellen zusammen:

$$\begin{array}{ll} U'_{noise}(t) &= U_{noise}(t) \left[a_1 sin \omega_1 t + a_2 sin \omega_2 t + a_3 sin \omega_3 t + \dots \right] \\ &= U_{noise}(t) \ a_1 sin \omega_1 t \ + U_{noise}(t) \ a_2 sin \omega_2 t + U_{noise}(t) \ a_3 sin \omega_3 t + \dots \end{array}$$

Mit einem Tiefpaß läßt sich U'_{noise}(t) entfernen. Voraussetzung ist allerdings, daß die Frequenz des Choppers hinreichend hoch über der maximalen Frequenz des Nutzsignals liegt.

- SC / Seite 4-49 -

4.3.3 Auto-Zero-Technik

4.3.3.1 SC-Integrator ohne Auto-Zero-Kompensation

Bild 4.3.3-2: SC-Integrator ohne Auto-Zero-Kompensation.

Phase ϕ_1 :

In Bild 4.3.3-2(a) liegt sowohl an der Kapazität C₁ als auch an dem unvermeidlichen Parasiten C_p die Spannung 0V. Die Kapazität C₁ enthält somit die Ladung Q₁(Φ_1)=0As und auch der Parasit C_p enthält die Ladung 0As. An C₂ liegt irgendeine Spannung U_{C2,0}=U_{2,0}-U_{off}.

Phase ϕ_2 :

In Bild 4.3.3-2(b) liegt an der Kapazität C1 die Spannung

 $U_{C1}=U_1 - U_{off}$.

C₁ enthält also nun die Ladung

 $Q_1(\Phi_2) = C_1 U_{C1} = C_1 (U_1 - U_{off}).$

Diese Ladung kann nur über die Kapazität C_2 geliefert worden sein. Daher muß sich die Spannung über C_2 durch diesen Ladestrom um

 $\Delta U_2 = \Delta Q_2/C_2 = -\Delta Q_1/C_2 = -Q_1(\Phi_2)/C_2 = -(U_1-U_{off}) C_1/C_2$

verändert haben. Da der OP als Invertierer arbeitet, muss das negative Vorzeichen vor der Spannungsänderung erhalten bleiben.

Zusätzlich ist zu bedenken, daß sich auch die Spannung über dem Parasiten C_p um U_{off} verändert hat. Auch dieser muß über C_2 geladen werden. Berücksichtigt man die Ladung für den Parasiten C_p , dann erhält man

$$\Delta U_2 = -\Delta Q_2/C_2 = -(U_1 - U_{\text{off}}) C_1/C_2 - U_{\text{off}} C_p/C_2$$
.

Aus dieser Formel ist leicht zu ersehen, daß sowohl die Offsetspannung U_{off} als auch der Parasit C_p die Genauigkeit des Integrators beeinträchtigt. Dies ist besonders gravierend, da solche Schaltungen u.a. für die Präzisionsmeßtechnik benötigt werden.

- SC / Seite 4-50 -

4.3.3.2 Die Grundidee der Auto-Zero-Technik

(a) Phase Φ_1

(b) Phase Φ_2

Bild 4.3.3-1: Phase (a): Laden der Offsetspannung auf die Kompensationskapazität C_c, Phase (b): C_c kompensiert U_{off}.

Die Grundidee der Auto-Zero-Technik liegt darin, die Offset-Spannung eines OPs gemäß Bild 4.3.3-1(a) auf eine Kapazität C_c zu laden und sie anschließend gemäß Bild 4.3.3-1(b) zur Kompensation der Offsetspannung zu verwenden. Dies geschieht automatisch und ohne Justierung von Hand. Um ein treiben (engl.: float) der Spannung auf der Kompensationskapazität zu verhindern, muß diese zwischen beiden zuständen geschaltet werden.

Da ein Stillstand der Schalter nicht erlaubt ist, fällt diese Schaltungstechnik unter die Kategorie "dynamisches Analogdesign".

Typische Frequenzen für die Schalter liegen ab 10KHz aufwärts. Da der Eingangsstrom eines Bipolartransistors die Kapazität entladen würde, eignet sich diese Technik vor allem für OPs mit FET Eingang. Da hier bereits eine Kapazität geschaltet werden muß, eignet sich dieses Verfahren besonders für "Switched-Capacitor" (SC) Schaltungen.

4.3.3.3 SC-Integrator mit Auto-Zero-Kompensation

Bild 4.3.3-3: SC-Integrator mit Auto-Zero-Kompensation.

Phase ϕ_1 :

In Bild 4.3.3-3(a) liegt an der Kapazität C1 die Spannung

 $U_{C1} = -U_{off}$.

Gemäß dem Prinzip der Auto-Zero-Kompensation wird C_1 mit $-U_{off}$ vorgeladen. Man beachte: Die Spannung U_{off} liegt auch an der parasitären Kapazität C_p .

Phase ϕ_2 :

Die linke Seite von C_1 vollzieht einen Spannungssprung U_1 . Die rechte Seite von C_1 bleibt auf dem Potential U_{off} . C1 erfährt also eine Spannungsänderung

 $\Delta U_{C1}=U_1.$

Dadurch ändert sich die Ladung auf C_1 um

 $\Delta Q_1(\Phi_2) = C_1 \Delta U_{C1} = C_1 U_1.$

Diese Ladung muß über C2 geliefert werden, womit sich wegen $\Delta U_2 = \Delta U_{C2}$ ergibt:

 $\Delta U_2 = \Delta Q / C_2 = U_1 C_1 / C_2.$

Der Einfluß der Offsetspannung wurde eliminiert. Zudem wurde der Einfluß der parasitären Kapazität C_p eliminiert, da dieser nun immer auf der konstanten Spannung U_{inn}=U_{off} liegt. Auf diese Weise werden hochpräzise SC-Integratoren gebaut.

SC-Integratoren mit der hier beschriebenen Technik zur Auto-Zero-Kompensation werden u.a. in $\Sigma\Delta$ -Modulatoren eingesetzt. Die damit erreichten Analog/Digital Wandler zählen zu den genauesten der Welt. Sie erreichen bis ca. 20 Bit Genauigkeit: $2^{-20} \cong 10^{-6}$.

- SC / Seite 4-52 -

4.3.3.4 SC-Integrator mit Auto-Zero-Kompensation

Besonders aufwendig korrigiert der OPA333 von Texas Instruments seine Offset-Spannung. Zwei OPs (im Bild A_{N1} und A_{N2}) messen und korrigieren die Offsetspannung des eigentlichen Arbeits-Verstärkers (im Bild A_M). Da A_{N1} und A_{N2} sich selbst auch Offset-korrigieren müssen, eichen sie sich abwechselnd selbst und korrigieren dann den A_M bezeichneten OP. Die Schalterstellungen im Bild oben zeigen die Situation, in der sich A_{N1} selbst autozerokompensiert während A_{N2} die Offset-Spannung des Arbeits-OPs AM ausgleicht. So wird eine Offsetspannung von max. 10µV bei CMRR und Leerlaufverstärkung von typ. 130dB erreicht. Die Temperaturdrift der Offsetspannung wird auf dieser Weise ebenfalls automatisch ausgeglichen und liegt bei kaum mehr messbaren 50nV/K.

4.4 Makromodelle für Operationsverstärker

4.4.1 Spannungsgesteuerte Spannungsquelle

Bild 4.4.1: OP (a) Symbol, (b) einfachstes Modell, (c) typ. Zuordnung der inneren Knoten

Zur Simulation von analogen Schaltungen haben sich weltweit Derivate des Schaltkreissimulators Spice [Spice3] der Berkeley Univ. durchgesetzt. Hersteller von Operationsverstärkern (OPs) bieten sogenannte Spice-Macros an. Dies sind Verhaltensmodelle, welche einerseits dem Kunden die realistische Simulation eines OP erlauben und andererseits vom Hersteller keine genauen Angaben über das Innere der Baugruppe verlangen.

Gratis aus dem Internet bekommt man u.a. den Simulator LTspice (auch SwitcherCAD genannt) von Linear Technology [LTspice]. Als Macro für den OP TL082 bekommt man zwei ASCII-Dateien namens tl082.asy und tl082.sub, welche die graphische Erscheinungsform gemäß Bildteil (a) und das Spice-Modell (siehe Bilder unten) enthalten.

Das einfachste Verhaltensmodell eines idealen OPs zeigt Teil (b) des obigen Bildes mit einer spannungsgesteuerten Spannungsquelle. In der ungenormten Defacto-Norm der Spice-Eingabesprache ist eine solche Quelle gekennzeichnet durch den Anfangsbuchstaben E:

Spice Anweisung allg.: Ename no+ noni+ \mathbf{A}_{v} ni-V(no+ , Bedeutung : no-) = V(ni+, ni-)A... Beispiel im Bildteil (b): 5 1 2 200000 \mathbf{Ev} 0

Dieses Modell ist unrealistisch gut. Um realistischere (und daher komplexere) Modelle leicht mehrfach verwenden zu können, modelliert man sie als "Subcircuits", in denen man die in Bildteil (c) gezeigte innere Knotennummerierung verwendet. Sie ist unabhängig von den Knotennummern außerhalb der Baugruppe. Die Spice- Deklaration für den TL082 lautet

.subckt TL082 1 2 3 4 5

... .ends

Der Aufruf aus einer Schaltung mit den Knotennummern gemäß Bildteil (c) muss mit einem X beginnen und würde dann für die Instanz mit dem Namen Xop1 wie folgt aussehen:

Xop1 14 28 32 47 59 TL082

Spice ist nicht "case sensitiv", 'm'=mili und 'meg'=mega: 1mA=1Ma=10⁻³A, 1MEGA=10⁶A.

Vdd

Values for TL082

(a)

₫ 3 R_{D1} R_{D2} 91 V_C =1.5V 2.947K 2.947K D_{lp} V_{lp} =50V 2.412pF 90 C 53 11 12 C₂ D_{ln} H_{lim} C_1 VIn =50V 92 C D_c Vim Vip 18pF J₂ 2 > 1 0V 6 7 8 out 10 Ga 5 Dp R_{o1} 100K C_2 朩 V_{lim} *V_{11,12} 18pF 50Ω 大De G cm R_{o2} R_{ss} ı_{R2}∗F •b 10 0ν 0 170Ω 54 n Ω Css 854.7K V₃+V₄ 99 V_e =1.5V I_{SS} =234μA Egnd Vss Λ (b) (1) (2) * connections: non-inverting input (3) * inverting input Т (4) positive power supply Т 1 (5) | negative power supply T Т (6) | output T (7) Т (8) .subckt TL082 1 2 34 5 (9) (10) c1 11 12 2.412E-12; c2 6 7 18.00E-12; css 10 99 5.400E-12 (11) dc 5 53 dx; de 54 5 dx; dlp 90 91 dx; dln 92 90 dx; dp 4 3 dx; (12) egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 (13) fb 7 99 poly(5) vb vc ve vlp vln 0 3.467E6 -3E6 3E6 3E6 -3E6 0 11 12 339.3E-6 (14) ga 6 (15) gcm 0 6 10 99 17.01E-9 (16) iss 10 4 dc 234.0E-6 (17) hlim 90 0 vlim 1K (18) j1 11 2 10 jx1; j2 12 1 10 jx2 (19) r2 69 100.0E3; rd1 3 11 2.947E3; rd2 3 12 2.947E3; (20) rss 10 99 854.7E3 (21) rol 85 50; ro2 7 99 170; (22) rp 34 20.00E3 (23) vb 9 0 dc 0; 3 53 dc 1.500; 54 4 dc 1.500; vc ve (24) vlim 7 8 dc 0; vlp 91 0 dc 50; 0 92 dc 50; vln (25) .model dx D(Is=800.0E-18) (26) .model jx1 NJF(Is=2.500E-12 Beta=984.2E-6 Vto=-1) (27) .model jx2 NJF(Is=2.500E-12 Beta=984.2E-6 Vto=-1.003) (28) .ends

4.4.2 Spice-Macro für den TL08x mit JFET- Eingang

Bild 4.4.2-1: Macro für OP082. (a): Schaltplan, (b): Spice-Modell aus Datei tl082.sub.Im Bildteil (b) beginne nach einem Semikolon ein neuer Spice-Befehl, nicht Kommentar.

Grundfähigkeiten bezüglich der textuellen Spice- Eingabesprache werden in diesem Kapitel vorausgesetzt und können u.a. in [Spice3] nachgelesen werden. Hier werden nur einige Besonderheiten erwähnt, die auch geübten Spice- Anwendern oft nicht bewusst sind.

Das Bild oben zeigt das international übliche Verhaltensmodell für OPs in der Variante mit JFET- Eingang. Für andere OPs werden lediglich die Eingangstransistoren getauscht und evtl. Emitterwiderstände eingeführt bevor man die Bauelementewerte so "fittet", dass das Gesamtverhalten dem mittleren, gemessenen Verhalten entspricht. Die Bauelementeparameter im Bild oben sind dem Macro des Herstellers (Datei tl082.sub aus [LTspice]) entnommen. Man beachte, dass der TL082 p-Kanal-JFETs im Eingang hat, während hier das Standardmodell mit n-Kanal-JFETs verwendet wird.

Quellen: Es gibt 6 verschiedenen Quellen, gekennzeichnet durch ihre Initialen:						
Quelltyp:	unabhängig	spannungsgesteuert	stromgesteuert			
Spannungsquelle:	V	E	Н			
Stromquelle:	I	G	F			

Spannungsquellen dienen in zweiter Funktion als Stromsensoren. Wird eine Quelle von **m** Größen gesteuert, verwendet man das Schlüsselwort poly wie folgt (mit \$ = E, F, G, H):

\$name no+ no- poly(m) offset v1 v2 ... vm p1 p2 ... pm

\$:	Bedeutung	(Spannungs	quellen die	nen auch als	Stromse	nsoren):
E:	V(no+,no-)	= Voffset	$+ p_1 v_1$	$+ p_2 v_2$	+	$+ p_m v_m$
F:	I(no+,no-)	= Ioffset	$+ p_1 I(v_1)$	$+ p_2 I(v_2)$	+	$+ p_m I(v_m)$
G:	I(no+,no-)	= Ioffset	$+ p_1 v_1$	$+ p_2 v_2$	+	$+ p_m v_m$
H:	V(no+,no-)	= Voffset	$+ p_1 I(v_1)$	$+ p_2 I(v_2)$	+	$+ p_m I(v_m)$

Bild 4.4.2-2: Pfad der DC-Verstärkung aus dem Macro oben.

DC-Spannungsverstärkung $A_{V0} = A_{V1} A_{V2} A_{V3}$:

Av1, Eingangsstufe:

Die Qualität der Eingangsstufe entscheidet über die Qualität des gesamten OPs. Dies gilt auch für das Simulationsmodell und daher verwendet man hier Transistoren, obwohl nichtlineare Bauelemente die Simulation erheblich verlangsamen. (Die Dioden leiten nur in extremen Situationen und verlangsamen die Simulation in Standardsituationen nicht.)

Offset-Spannung: Die JFETs J1 und J2 verweisen auf die Modellanweisungen (.model) für n-Kanal JFETs (NJF) namens jx1 und jx2, die sich nur durch ihre Schwellspannungen (vto: turn-on voltage) unterscheiden, damit man mit ihnen den Offset des OPs einstellen kann.

A_{V1}: Spannungsverstärkung der Eingangsstufe A_{V1} = V_{11,12}/V_{1,2} mit $g_m = 2\sqrt{\beta I_D}$, ID=½Iss: A_{V1} = ½ g_m*(R_{D1}+R_{D2}) = $\sqrt{\beta I_D}$ *(R_{D1}+R_{D2}) = $\sqrt{\beta I_{SS}/2}$ *(R_{D1}+R_{D2}), Im Macro für den TL082: beta=984.2E-6, Iss=234*10⁻⁶A, R_{D1,2}=2.947KΩ \rightarrow A_{V1}=2.

A_{V2}: Spannungsverstärkung A_{V2} = V₆/V_{11,12} = -G_a R₂. Im Macro für den TL082: A_{V2} = -G_a R₂ = -339.3E-6 Ω⁻¹ · 100KΩ = -33,93

 $\begin{array}{ll} \mathbf{A_{V3}:} & (\text{es ist I}(F_b)=F_b\cdot I(V_b)=F_b\cdot I_{R2}=F_b\cdot V_6/R_2=F_b/R_2\cdot V_6 & \text{mit Übertragungsleitwert } F_b/R_2. \\ \text{Spannungsverstärkung } A_{V3}=V_7/V_6=F_b \ I_{R2} \ R_o/V_6=F_b \ R_o/R_2. \\ \text{Im Macro mit offenem Ausgang:} & R_o=R_{o2}: A_{V3}=-3.467E6\cdot 170\Omega \ / \ 100K\Omega=-5894 \ , \\ \text{Ausgang gegen kurzgeschlossen:} & R_o=R_{o2}||R_{o1}: A_{V3}=-3.467E6\cdot 38,64\Omega \ / \ 100K\Omega=-1340. \end{array}$

 $\begin{array}{ll} \textbf{A}_{V0} \text{: Gesamtverstärkung der drei Stufen} & (\text{Datenblatt: } 200\ 000 = 106\ dB) \\ \textbf{A}_{V0} = \textbf{A}_{V1}\ \textbf{A}_{V2}\ \textbf{A}_{V3} = \sqrt{\beta I_{SS}/2}\ (\textbf{R}_{D1} + \textbf{R}_{D2}) \cdot \textbf{G}_{a} \cdot \textbf{F}_{b} \cdot \textbf{R}_{o} \\ \text{Im Macro mit offenem Ausgang:} & \textbf{A}_{V0} = 2 \cdot 33,93 \cdot 5894 = 400\ 000 = 112\ dB \\ \textbf{A}_{U0} = \textbf{a}_{U1}\ \textbf{A}_{U0} = 2 \cdot 33,93 \cdot 1340 = 90\ 932 = 99,2\ dB. \\ (\textbf{A}_{V0}\ \text{mit Lastwiderstand } \textbf{R}_{L} = 0\Omega\ \text{ist eine theoretische Verstärkung vor } \textbf{R}_{o1}. \ \text{Praktisch muss ein } \textbf{R}_{L}\ \text{gewählt werden,} \\ \textbf{das keine Strombegrenzung verursacht.} \ \textbf{Am Ausgang des OPs\ messbar ist } \textbf{A}_{V,eff} = \textbf{A}_{V0} \cdot \textbf{R}_{L}/(\textbf{R}_{L} + \textbf{R}_{o1}). \) \end{array}$

$$\begin{split} & \textbf{CMRR} = \textbf{A}_{V0} / \textbf{A}_{Vcm} \text{: Common Mode Rejection Ratio (Datenblatt: 86 dB)} \\ & \textbf{A}_{Vcm} = \textbf{G}_{cm} \cdot \textbf{R}_2 \cdot \textbf{A}_{V3}. \\ & \textbf{CMRR} = \textbf{A}_{V0} / \textbf{A}_{Vcm} = \textbf{A}_{V1} \textbf{A}_{V2} / (\textbf{G}_{cm} \cdot \textbf{R}_2). \\ & \textbf{Im Beispiel mit offenem Ausgang: } \textbf{A}_{Vcm} = 17.01\text{E-9} \ \Omega^{-1} \cdot 100\text{K}\Omega \cdot 5894 = 10 = 20\text{dB} \\ & \textbf{CMRR} = 400 \ 000 / 10 = 40 \ 000 = (112\text{-}20) \ \textbf{dB} = 92 \ \textbf{dB} \end{split}$$

Pole:

 $\begin{array}{ll} f_{p1}=1 \; / \; (2\pi\;R_2\;C'_{2a}) = 1 / (\; 2\pi\;R_2\;C_2(1\text{-}A_{V3})\;) & \mbox{wg. Miller-Effekt} \\ f_{p2}=1 \; / \; (2\pi\;(R_{D1}+R_{D2})\;C_1) \\ f_{p3}=1 \; / \; (2\pi\;R_o\;C'_{2b}) = 1 / (\; 2\pi\;R_o\;C_2(1\text{-}1/A_{V3})\;) & \mbox{wg. Miller-Effekt} \\ \mbox{Im Beispiel:} \; \; f_{p2}=1 \; / \; (2\pi\cdot2\cdot2947\Omega\cdot2,412pF) = 11,2\;MHz \\ \mbox{mit offenem Ausgang:} \; \; f_{p1}=1 / (\; 2\pi\cdot100K\Omega\cdot18pF(1\text{-}(\text{-}5894))\;) = 15\;Hz \\ \; f_{p3}=1 / (\; 2\pi\cdot170\Omega\cdot18pF(1\text{-}(\text{-}1/5894))\;) = 52\;MHz \\ \mbox{Ausgang auf Masse:} \; \; \; f_{p1}=1 / (\; 2\pi\cdot100K\Omega\cdot18pF(1\text{-}(\text{-}1340))\;) = 66\;Hz \\ \; f_{p3}=1 / (\; 2\pi\cdot38,64\Omega\cdot18pF(1\text{-}(\text{-}1/1340))\;) = 229\;MHz \\ \end{array}$

GB: Gain-Bandwidth Product (Datenblatt: $B_1 = 3 \text{ MHz}$) Es ist $GB = f_{p1} \cdot |Av_0|$. Es muss unabhängig von der Ohmschen Belastung sein. Im Beispiel mit offenem Ausgang: $GB = 15\text{Hz} \cdot 400\ 000 = 6 \text{ MHz}$ und mit Ausgang auf Masse: $GB = 66\text{Hz} \cdot 90\ 932 = 6 \text{ MHz}$

f_T: Transitfrequenz, oft auch f_x für "cross-over frequency" (Datenblatt Fig. 12: ca. 2 MHz) Kennzeichen: $A_V(f_T) = 1 = 0$ dB. meist ist $f_{p2} \ge f_T$, dann ist $f_T = GB = f_{p1} \cdot A_{V0}$. Im Beispiel ist $f_{p2}=11,2$ MHz > GB=6MHz, so dass $f_T\approx$ GB=6MHz zu erwarten ist.

Begrenzung von Ausgangsspannung und Ausgangsstrom

Die Spice- Anweisung "fb 7 99 poly(5) vb vc ve vlp vln 0 3.467E6 -3E6 3E6 3E6 -3E6"

bedeutet I(Fb) = $3.467E6 \cdot I(vb) - 3E6 \cdot I(vc) + 3E6 \cdot I(vc) - 3E6 \cdot I(vc) + 3E6 \cdot I(vc)$, was gleichwertig ist mit I(Fb) = $3.467 \cdot 10^{6} \cdot I_{R2} - 3 \cdot 10^{6} \cdot I_{Dc} + 3 \cdot 10^{6} \cdot I_{De} - 3 \cdot 10^{6} \cdot I_{Dlp} + 3 \cdot 10^{6} \cdot I_{Dln}$.

Für $V_{out} > V_{dd} - Vc + 0,7V$ wird der Strom durch Diode Dc sehr groß und dämpft I(Fb) Für $V_{out} < V_{ss} + Ve - 0,7V$ wird der Strom durch Diode De sehr groß und dämpft I(Fb)

Für die Strombegrenzung ist V(H_{lim}) = H_{lim} ·I(v_{lim}), im Beispiel: V(H_{lim}) = 1K Ω ·I_{out}. Für V(H_{lim}) > V_{lp}+0,7V wird I_{Dlp} groß u. dämpft I(Fb), im Beispiel bei: 1K Ω ·I_{out} > 50,7V. Für V(H_{lim}) < -(V_{ln}+0,7V) wird I_{Dln} groß u. dämpft I(Fb), im Beispiel ab 1K Ω ·I_{out} < -50,7V.

Zout: Ausgangsimpedanz Bei gesperrten Dioden Dc, De: $Z_{out} = R_{o1} + R_{o2}$. Im Beispiel $Z_{out}=50\Omega+170\Omega=220\Omega$.

CMR, IVR: Common-Mode- oder Input-Voltage Range: Vom Spice Modell nicht erfasst.

Fitten der OP-Parameter auf die Messwerte

Voffset	= $Vto(J2) - Vto(J1) \rightarrow vto in$ ".model jx2 NJF()" anpassen
Avo, f _{p1} : beide:	$A_{V0} \sim Fb$, $f_{p1} \sim 1/Fb$, $(A_{V0} \cdot f_{p1}=GB)$, Fb ist der Produktparameter p1 in fb
Avo einzeln:	\sim Ga \rightarrow Ga anpassen, letzter Parameter in "ga 6 0 11 12 339.3E-6"
f _{p1} einzeln:	~ $1/C_2$ und $1/A_{V_3} \rightarrow C_2$ anpassen, Fb- Anweisung nicht verändern!
f _{p2} :	$\sim 1/C_1 \rightarrow C_1$ anpassen
Zout:	$=R_{o1} + R_{o2} \rightarrow R_{o1}$ and an exact (nicht R_{o2} , wg. Einfluss auf A_{V3} !)
Vout,max	$\approx V_{dd} - Vc + 0,7V \rightarrow Vc \text{ anpassen}$
Vout,min	$\approx V_{ss} + Ve - 0,7V \rightarrow Ve anpassen$
Iout,max	$\approx (V_{lp}+0,7V)/H_{lim} \rightarrow Vlp$ anpassen
Iout,min	$\approx -(V_{ln}+0,7V)/H_{lim} \rightarrow Vln anpassen$

Parameter	Datenblatt	Macro berechnet	Macro simuliert	Muster im Labor
Voffset	9 mV	3 mV	3 mV	1,6 mV
Av ₀	200 000 =	400 000 =	400 000 =	676000=116,6dB
	106dB	112dB	112dB	
f _{p1}	$\approx 15 \mathrm{Hz}$	15 Hz	15,09 Hz	7,1 Hz
$\mathbf{f}_{\mathrm{T}} = \mathbf{G}\mathbf{B} \; (\mathrm{i}\mathbf{f} < \mathbf{f}_{\mathrm{p2}})$	3MHz	6MHz	11,6MHz	4,80 MHz
f _{p2}	$> f_T$	11,2 MHz	11,3MHz	$\approx 6,3$ MHz
CMRR	86 dB	92 dB		

4.4.3 Spice-Macro für den OP07 mit bipolarem Eingang


```
(2)
    *
       connections:
                       non-inverting input
(3)
    *
                       | inverting input
(4)
     *
                         | positive power supply
                       Т
(5)
                           | negative power supply
                       I
                         Т
(6)
                              | output
                        I
                         Т
                           (7)
                        I
                         Ι
                            Ι
                              I
                                I
(8)
     .subckt OP07
                         2
                           3
                              4
                                5
                       1
(9)
(10)
            11 12 8.661E-12;
                                 c2
                                        6
                                           7 30.00E-12
       c1
(11)
       dc 5 53 dx; de 54 5 dx; dlp 90 91 dx;
                                                   dln 92 90 dx;
                                                                    dp 4 3 dx
                0 poly(2) (3,0) (4,0) 0 .5 .5
(12)
       egnd 99
       fb 7 99 poly(5) vb vc ve vlp vln 0 221.0E6 -200E6 200E6 -200E6 -200E6
(13)
       ga
(14)
             6
                0 11 12 113.1E-6
       gcm
(15)
             0
                 6 10 99 56.69E-12
(16)
            10
                4 dc 6.002E-6
       iee
(17)
       hlim 90
                0 vlim 1K
            11
                2 13 qx;
                                  12 1 14 qx1
(18)
       q1
                             q2
(19)
             6
                9 100.0E3;
                             rc1
                                    3 11 8.841E3;
                                                      rc2
                                                             3 12 8.841E3
       r2
                                                        10 99 33.32E6
            13 10 219.4;
                            re2
                                  14 10 219.4;
(20)
       re1
                                                   ree
                5 40;
                                7 99 20
(21)
             8
                         ro2
       ro1
             3
(22)
                4 12.03E3
       \mathbf{rp}
             9
(23)
                0 dc 0;
                                  3 53 dc 1;
                                                      54
                                                          4 dc 1
       vb
                            vc
                                                 ve
             7
(24)
                                 91 0 dc 30;
                                                        0 92 dc 30
       vlim
                8 dc 0;
                            vlp
                                                  vln
(25) .model dx D(Is=800.0E-18)
(26) .model qx NPN(Is=800.0E-18 Bf=3.000E3)
(27) .model qx1 NPN(Is=803.0E-18 Bf=3.000E3)
(28) .ends
```

Bild 4.4.3: Macro für OP07. (a): Schaltplan, (b): Spice-Modell aus Datei op07.sub.Im Bildteil (b) beginne nach einem Semikolon ein neuer Spice-Befehl, nicht Kommentar.

Das Macro für den OP07 im Bild oben unterscheidet sich vom Macro mit JFET- Eingängen nur durch die Eingangsstufe. Die Verstärkung eines Astes dieser Stufe ist gegeben durch

- SC / Seite 4-60 -

$$\frac{v_C}{v_E} = -\frac{R_C}{R_E} \implies v_C = -\frac{R_C}{R_E} v_E$$

Kleinsignal-Spannungsteilerformel: $v_E = \frac{R_E}{r_m + R_E} v_B \rightarrow v_C = -\frac{R_C}{r_m + R_E} v_B$. Somit ist die Verstärkung des linken und/oder rechten Astes der Eingangsstufe gegeben mit $A_{V,left/right} = \frac{v_C}{v_{BE}} = -\frac{R_C}{r_m + R_E}$. Einerseits erhält jeder Ast der Eingangsstufe nur die halbe differentielle Eingangsspannung vBe1=-vBe2=1/2uin, andererseits werden diese beiden Hälften am Ausgang wieder summiert, so dass die Verstärkung der gesamten Eingangsstufe, Av1, gleich der Verstärkung ihrer einzelnen Hälften ist:

$$A_{V1} = \frac{V_{11,12}}{V_{1,2}} = -A_{V,left/right} = \frac{R_C}{r_m + R_E} = \frac{R_C}{2u_T / Iee + R_E},$$

wobei für den Ruhestrom durch die Eingangstransistoren $I_C=\frac{1}{2}I_{ee}$ und $r_m=1/g_m=u_T/I_C=2u_T/I_{ee}$ gesetzt wurde. Der Knoten 10 wird als "virtuelle Masse" für das differentielle Eingangssignal kleinsignal bezeichnet, da er sich für kleine, rein differentielle Eingangssignale ($v_{BE1}=\frac{1}{2}u_{in}$, $v_{BE2}=-\frac{1}{2}u_{in}$) nicht bewegt. Dagegen vollzieht Knoten 10 das Gleichtakt (Common Mode) Eingangssignal $u_{cm}=\frac{1}{2}(V_1+V_2)$ ungedämpft mit. Das Steuersignal für die Stromquelle G_{cm} wird daher mit V₁₀ gesteuert.

Die Berechnung der restlichen Größen dieses OP-Modells ist völlig analog zum oben vorgestellten Modell mit JFET- Eingang und kann mit den im Bild gegebenen Werten für den OP07 als Übung verwendet werden. (Eine Kontrolle ist über eine Spice- Simulation möglich.)

Parameter	Datenblatt	Macro berechnet	Macro simuliert	Muster im Labor
Voffset	0,03 mV			
Av ₀	500 000 = 114dB			
f _{p1}	=GB/A _{V0} $=$ 1,2Hz			
$\mathbf{f}_{\mathrm{T}} = \mathbf{G}\mathbf{B} \; (\mathrm{i}\mathbf{f} < \mathbf{f}_{\mathrm{p2}})$	0,6 MHz			
f _{p2}	$> f_T$			
CMRR	123 dB			

 Tabelle 4.4.3 : Vergleich der Kenndaten des OP07 aus verschiedenen Quellen

4.4.4 Spice-Macro für vollständig differentielle Verstärker

(b) Innenschaltung eines Macros für einen vollständig differentiellen Verstärker

Bild 4.4.4: Macro für vollständig differentielle Verstärker

Bild 4.4.4 zeigt ein Macro für einen vollständig differentiellen Verstärker, (a) als Sym,bol und (b) eine mögliche Innenschaltung. Eigenschaften:

- Differnetielle Eingangsimpedanz: *R*_i,
- Eingangs-Offset-Spannung Uoff,
- Verstärkung und Pol der 1. Stufe: A_{VI} und $1/(2\pi R_I C_I)$
- Verstärkung und Pol der 2. Stufe: G_m und $1/(2\pi R_2 C_2)$
- Differentielle Ausgnagsimpedanz: $R_2 + R_3$,
- Ist-Wert der Common-Mode-Ausgangsspannung: U_{ocmi} , verfügbar mit Impedanz $R_x/2$,
- Soll-Wert der Common-Mode-Ausgangsspannung: U_{ocm} , Default-Wert $\frac{1}{2}$ ($V_{CC}+V_{EE}$), verfügbar mit Ausgangsimpedanz $R_x/2$,
- A_{V2} muss so groß sein, dass die durch Quelle A_{V2} erzeugte Asymmetrie $\langle |U_{off}|$ Ist. (A_{V2} müsste im idealen Symmetriefall auf U_{ocmi} wirken, aber das ist mit geringer Ausgangsimpedanz ungünstig zu machen.)

4.5 Referenzen

- [Böd07] Bödiger, Wolfgang, "Rauschen ausgeblendet Genaue OPVs durch Autozero-Technik", Design & Elektronik, Heft 09, September 2007, pp. 18-20.
- [Spice3] <u>http://newton.ex.ac.uk/teaching/CDHW/Electronics2/userguide/</u>
- [LTspice] http://www.linear.com/designtools/software/index.jsp
- [AD] http://www.analog.com/library/analogDialogue/archives/43-09/linear_circuit_design_handbook.html, Chapter 1, page 1.17