Course	Course Acronym		
Wireless Sensor/Actuator Networks	WSAN		
Responsible	Faculty		
Prof. Dr. Martin Schubert	Elektro- und Informationstechnik		
Lecturer	Offer Frequency		
Prof. Dr. Martin Schubert	Every semester		
Teaching Methode			
50% seminar teaching and 50% practical training			

Semester according to Curriculum	Teaching Scope (SWS or UE)	Lehrsprache (Teaching Language)	Arbeitsaufwand (ECTS-Credits)
2. oder 3.	4 SWS	Deutsch, English on demand, Documents English	5

Campus Program	Self-Study
56 h	Preparation and review: 62 h,
	Exam preparation: 32 h

Study and Examination Conditions
see -> Studienplantabelle
Approved Aids for Exam
see -> Studienplantabelle

Contents

Theory:

- 1. Transmission Fundamentals
- 2. Physical Level
- 3. Data Link Level
- 4. Network Level
- 5. Transport Level
- 6. Current Topics (guest lecturer)

Practical:

- a) Get familiar with the microcontroller part.
- b) Getting started with the wireless part
- c) Student projects concerning wireless transmission.

Knowledge/Skills/competences

Knowledge:

- 1. Fundamentals
 - + Theory

ISO Layer Model

Most important IEEE standards

- + Practical: basic C language needs
- 2. Physical Level
 - + Theory

ISM frequency bands,

Wireless physics (FSPL, ERP vs. range, Fresnel zone)

- + Practical: Getting startet with programming the hardware
- 3. Data Link Level
- 4. Network Level
- 5. Transport Level
- 6. Routing strategies

Skills:

Students learn by means of exercises and examples the

- + application of knowledge gained by understanding the course,
- + analysis of wireless requirements and to relate them to wireless network topologies.

Competences:

By means of a self-chosen group-dependent project examples students will

- + evaluate which wireless components and topologies meet requirements of particular situations best, based on understanding gained in point knowledge,
- + create an wireless network solution meeting the given requirements, based on knowledge and understanding listed under Headline "knowledge".

Offered Teaching Materials

Script and instructions for practical training

Teaching Media

Blackboard and beamer, electronics laboratory with experimental setups

References

- [1] Thomas Watteyne, eZWSN Exploring Wireless Sensor Networking, available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.468.2103&rep=rep1&type=pdf
- [2] Robert Faludi: Building Wirelss Sensor Networks, O'Reilly Media, 2010
- [3] F. Zhao, L.J. Guibas: Wireless Sensor Networks, Morgan Kaufmann, 2004
- [4] Chiara Buratti: An Overview on Wireless Sensor Networks, OPEN ACCESS

Further Information About the Course (optional)

Documents English, teaching language is German or English depending on students.