Publications of Stefan Körkel
Books
-
T. Carraro, M. Geiger, S. Körkel, and R. Rannacher, editors.
Multiple Shooting and Time Domain Decomposition Methods.
Volume 9 of Contributions in Mathematical and Computational Sciences. Springer, 2015.
-
H. G. Bock, T. Carraro, W. Jäger, S. Körkel, R. Rannacher, and J. P. Schlöder, editors.
Model Based Parameter Estimation: Theory and Applications.
Volume 4 of Contributions in Mathematical and Computational Sciences. Springer, 2013.
Articles in Journals
-
F. Jost, M. Kudruss, S. Körkel, S. F. Walter.
A computational method for key-performance-indicator-based parameter identification of industrial manipulators.
Journal of Mathematics in Industry, 7, Nr. 9. S. 1-25, 2017.
-
T. Barz, D. Lopez, M. N. Cruz Bournazou, S. Körkel, S. F. Walter.
Real-time adaptive input design for the determination of competitive adsorption isotherms in liquid chromatography.
Computers & Chemical Engineering 94, 104-116, 2016.
-
N. Said, M. Engelhart, C. Kirches, S. Körkel and D. V. Holt.
Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.
PLoS ONE 11(7): e0158832. doi:10.1371/journal.pone.0158832, 2016.
-
D. Lopez, T. Barz, S. Körkel and G. Wozny.
Nonlinear ill-posed problem analysis in model-based parameter estimation and experimental design.
Computers & Chemical Engineering 77, 24-42, 2015.
-
S. F. Walter, A. Schmidt, and S. Körkel.
Adjoint-based optimization of experimental designs with many control variables.
Journal of Process Control, 24:1504-1515, 2014.
-
A. Schmidt, A. Potschka, S. Körkel, and H. G. Bock.
Derivative-extended POD for reduced-order modeling for parameter estimation.
SIAM Journal for Scientific Computing, 35(6):A2696-A2717, 2013.
-
S. Körkel, A. Potschka, H. G. Bock, and S. Sager.
A multiple shooting formulation for optimum experimental design.
Mathematical Programming, submitted 2008, accepted 2013.
-
C. K. F. Weiler and S. Körkel.
Optimum experimental design for extended Gaussian disorder modeled organic semiconductor devices.
J. Appl. Phys., 113, 2013.
-
A. Kud, S. Körkel, and S. Maixner.
A cubic equation of state based on saturated vapour modeling and the application of model-based design of experiments for its validation.
Chemical Engineering Science, 65:4194-4207, 2010.
-
J. Schöneberger, H. Arellano-Garcia, G. Wozny, S. Körkel, and H. Thielert.
Model-based experimental analysis of a fixed bed reactor for catalytic SO2 oxidation.
Ind. Eng. Chem. Res., 48:5165-5176, 2009.
-
H. Arellano-Garcia, J. Schöneberger, and S. Körkel.
Optimale Versuchsplanung in der chemischen Verfahrenstechnik.
Chemie Ingenieur Technik (CIT), 79(10):1625-1638, 2007.
-
S. Körkel, E. Kostina, H. G. Bock, and J. P. Schlöder.
Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes.
Optimization Methods and Software (OMS) Journal, 19(3-4):327-338, 2004.
-
I. Bauer, H. G. Bock, S. Körkel, and J. P. Schlöder.
Numerical methods for optimum experimental design in DAE systems.
Journal of Computational and Applied Mathematics, 120:1-25, 2000.
Articles in Books
- S. Körkel.
Design of Experiments in der Chemischen Reaktionstechnik.
In W. Reschetilowski (Hrsg.), Handbuch Chemische Reaktoren, Springer Reference Naturwissenschaften, Springer Spektrum, 2018.
- D. Janka, S. Körkel, and H. G. Bock.
Direct multiple shooting for nonlinear optimum experimental design.
In Multiple Shooting and Time Domain Decomposition Methods. Volume 9 of Contributions in Mathematical and Computational Sciences. Springer, 2015.
-
R. Kircheis and S. Körkel.
Parameter estimation for high-dimensional PDE models using a reduced approach.
In Multiple Shooting and Time Domain Decomposition Methods. Volume 9 of Contributions in Mathematical and Computational Sciences. Springer, 2015.
-
H. G. Bock, S. Körkel, and J. P. Schlöder.
Parameter estimation and optimum experimental design for nonlinear differential equation models.
In H. G. Bock, T. Carraro, W. Jäger, S. Körkel, R. Rannacher, and J. P. Schlöder, editors, Model Based Parameter Estimation: Theory and Applications, volume 4 of Contributions in Mathematical and Computational Sciences, pages 1-30. Springer, 2013.
-
H. G. Bock, J. P. Schlöder, S. Körkel, and A. Schreieck.
Model based optimum design of experiments.
In T. Lery, M. Primicerio, M. J. Esteban, M. Fontes, Y. Maday, V. Mehrmann, G. Quadros, W. Schilders, A. Schuppert, and H. Tewkesbury editors,
European Success Stories in Industrial Mathematics,
page 50. Springer, 2011.
-
H. G. Bock, O. Deutschmann, S. Körkel, L. Maier, H. D. Minh, J. P. Schlöder, S. Tischer, and J. Warnatz.
Optimization of reactive flows in a single channel of a catalytic monolith: Conversion of ethane to ethylene.
In W. Jäger, R. Rannacher, and J. Warnatz, editors, Reactive Flows, Diffusion and Transport, pages 291-310. Springer-Verlag, Berlin Heidelberg, 2007.
-
H. G. Bock, S. Körkel, E. Kostina, and J. P. Schlöder.
Robustness aspects in parameter estimation, optimal design of experiments and optimal control.
In W. Jäger, R. Rannacher, and J. Warnatz, editors, Reactive Flows, Diffusion and Transport, pages 117-146. Springer-Verlag, Berlin Heidelberg, 2007.
-
H. G. Bock, S. Körkel, E. Kostina, and J. P. Schlöder.
Methods for design of optimal experiments with application to parameter estimation in enzyme catalytic processes.
In M. G. Hicks and C. Kettner, editors,
Experimental Standard Conditions of Enzyme Characterization,
pages 45-70, Berlin, 2004. Logos Verlag.
-
I. Bauer, H. G. Bock, S. Körkel, and J. P. Schlöder.
Numerical methods for initial value problems and derivative generation for DAE models with application to optimum experimental design of chemical processes.
In F. Keil, W. Mackens, H. Voss, and J. Werther, editors,
Scientific Computing in Chemical Engineering II,
volume 2, pages 282-289. Springer-Verlag, Berlin Heidelberg, 1999.
-
S. Körkel, I. Bauer, H. G. Bock, and J. P. Schlöder.
A sequential approach for nonlinear optimum experimental design in DAE systems.
In F. Keil, W. Mackens, H. Voss, and J. Werther, editors,
Scientific Computing in Chemical Engineering II,
volume 2, pages 338-345. Springer-Verlag, Berlin Heidelberg, 1999.
-
B. Jähne, H. Scharr, and S. Körkel.
Principles of filter design.
In B. Jähne, H. Haußecker, and P. Geißler, editors,
Handbook of Computer Vision and Applications,
volume 2, pages 125-151. Academic Press, 1999.
-
I. Bauer, M. Heilig, S. Körkel, A. Kud, A. Mayer, and O. Wörz.
Versuchsplanung am Beispiel einer Phosphin- und Urethanreaktion.
In Optimale Versuchsplanung für nichtlineare Prozesse. Schriftliche Projektpräsentation zum BMBF-Verbundvorhaben. DECHEMA, 1998.
-
I. Bauer, S. Körkel, H. G. Bock, and J. P. Schlöder.
Optimale Versuchsplanung für dynamische Systeme aus der chemischen Reaktionskinetik.
In Optimale Versuchsplanung für nichtlineare Prozesse. Schriftliche Projektpräsentation zum BMBF-Verbundvorhaben. DECHEMA, 1998.
Articles in Proceedings
-
R. Lemoine-Nava, S. F. Walter, S. Körkel, S. Engell.
Online Optimal Experiment Design: Reduction of the Number of Variables.
In 11th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems, NTNU, Trondheim, Norway, June 6-8, 2016.
-
N. Said, D. V. Holt, M. Engelhart, C. Kirches and S. Körkel.
Mathematical Formalization and Optimization of an ACT-R Instance-Based Learning Model.
In Proceedings of International Conference on Cognitive Modeling (ICCM), Groningen, April 9-11, 2015.
-
J. Herold, S. F. Walter, S. Körkel and M. Buchner.
Optimal experimental design for parameter estimation of the Fitness-Fatigue model.
Accepted by Proceeding of the International Conference on Biomechanics and Sports Engineering, Riga, Latvia, 24-25 Oct 2014.
-
R. Kircheis and S. Körkel.
Parameter estimation for DAE models in a multiple experiment context.
In PAMM (Proc. Appl. Math. Mech.), volume 11, pages 715-716, 2011.
-
S. Körkel.
Optimum experimental design for nonlinear process models.
In PAMM (Proc. Appl. Math. Mech.), volume 11, pages 719-720, 2011.
-
S. Körkel and H. Arrellano-Garcia.
Online experimental design for model validation.
In Rita Maria de Brito Alves, Claudio Augusto Oller do Nascimento, and Evaristo Chalbaud Biscaia Jr., editors,
Proceedings of 10th International Symposium on Process Systems Engineering - PSE2009,
2009.
-
S. Körkel, H. Arellano-Garcia, J. Schöneberger, and G. Wozny.
Optimum experimental design for key performance indicators.
In B. Braunschweig and X. Joulia, editors,
Proceedings of 18th European Symposium on Computer Aided Process Engineering - ESCAPE 18,
2008.
-
J. Schöneberger, H. Arellano-Garcia, H. Thielert, S. Körkel, and G. Wozny.
Optimal experimental design of a catalytic fixed bed reactor.
In B. Braunschweig and X. Joulia, editors,
Proceedings of 18th European Symposium on Computer Aided Process Engineering - ESCAPE 18,
2008.
-
S. Körkel, H. Qu, G. Rücker, and S. Sager.
Derivative based vs. derivative free optimization methods for nonlinear optimum experimental design.
In Z. Chen, R. Glowinski, W. Tong, and W. Zhang, editors, High Performance Computing and Applications, Lecture pdfs in Computational Mathematics, pages 339-345. Springer-Verlag, 2005.
-
S. Körkel and E. Kostina.
Numerical methods for nonlinear experimental design.
In H. G. Bock, E. Kostina, H. X. Phu, and R. Rannacher, editors, Modelling, Simulation and Optimization of Complex Processes, Proceedings of the International Conference on High Performance Scientific Computing, March 10-14, 2003, Hanoi, Vietnam, pages 255-272, Berlin Heidelberg, 2004. Springer-Verlag.
-
H. Scharr, S. Körkel, and B. Jähne.
Numerische Isotropieoptimierung von FIR-Filtern mittels Querglättung.
In E. Paulus and F. M. Wahl, editors, Proc. Mustererkennung 1997, Braunschweig, 15.-17. September 1997, Informatik Aktuell, pages 367-374, Berlin, 1997. Springer-Verlag.
Miscellaneous
-
D. Beigel, S. Körkel, and A. Milde.
HCO Workshop Report Industrial Optimization.
February 2014.
-
T. Carraro, M. Geiger, S. Körkel, and R. Rannacher.
Workshop Multiple Shooting and Time Domain Decomposition Methods (MuS-TLI) - Book of Abstracts.
May 2013.
-
H. G. Bock, T. Carraro, W. Jäger, S. Körkel, R. Rannacher, and J. P. Schlöder.
Workshop Model Based Parameter Estimation: Theory and Applications - Program, Abstracts and List of Participants.
July 2009.
-
A. Griewank, S. Körkel, K. Kulshreshtha, T. Bosse, V. Schloßhauer, and L. Sadau.
LRAMBO, solver for nonlinear optimization problems with equality and inequality constraints.
NEOS Server, 2009.
-
S. Körkel and E. Kostina.
PARAOPE 2004 - International Workshop on Parameter Estimation and Optimal Design of Experiments: Numerical Methods and Applications - Book of Abstracts.
June 2004.
Supervised Doctoral Theses
-
D. Janka.
Sequential quadratic programming with indefinite Hessian approximations for nonlinear optimum experimental design for parameter estimation in differential-algebraic equations.
Doktorarbeit, Universität Heidelberg, 2015.
-
R. Kircheis.
Structure Exploiting Parameter Estimation and Optimum Experimental Design Methods and Applications in Microbial Enhanced Oil Recovery.
Doktorarbeit, Universität Heidelberg, 2015.
-
A. Schmidt.
Direct Methods for PDE-Constrained Optimization Using Derivative-Extended POD Reduced-Order Models.
Doktorarbeit, Universität Heidelberg, 2014.
-
C. K. F. Weiler.
Optimum Experimental Design for the Identification of Gaussian Disorder Mobility Parameters in Charge Transport Models of Organic Semiconductors.
Doktorarbeit, Universität Heidelberg, 2014.
-
E. R. Lexen.
Parameter sensitivity of synthetic spectra and light curves of Type Ia supernovae.
Doktorarbeit, Universität Hamburg, 2014.
-
S. F. Walter.
Structured higher-order algorithmic differentiation in the forward and reverse mode with application in optimum experimental design.
Doktorarbeit, Humboldt-Universität zu Berlin, 2012.
Supervised Master Theses
-
S. Lindner.
Comparison of Kalman and Gauss-Newton Filter Types for simultaneous State and Parameter Estimation.
Masterarbeit, Universität Heidelberg, 2016.
-
F. Jost.
Optimum Experimental Design for Parameter Estimation of Kinematic Chains with Consideration of Collision Avoidance.
Masterarbeit, Universität Heidelberg, 2015.
-
B. Görgülü.
Numerische Verfahren zur Approximation von Likelihood-Profilen.
Masterarbeit, Universität Heidelberg, 2014.
-
J. Herold.
Sensor Trajectory Optimization for Parameter Estimation of Pollution Processes.
Masterarbeit, Universität Heidelberg, 2014.
Supervised Diploma Theses
-
N. Zubek.
Gradientenberechnung für Versuchsplanungsprobleme unter PDE-Nebenbedingungen nach indirektem Lösungsansatz.
Diplomarbeit, Universität Heidelberg, 2015.
-
R. Grandl.
Methoden der Parameterschätzung bei Mehrfachexperimenten am Beispiel der hydrothermalen Karbonisierung.
Diplomarbeit, Universität Heidelberg, 2012.
-
M. Kudruss.
Optimale Versuchsplanung zur Steigerung der Stellungsgenauigkeit kinematischer Ketten.
Diplomarbeit, Universität Heidelberg, 2012.
-
M. Gottfried.
Multiple shooting and parameter estimation for delay differential equations with constant delay.
Diplomarbeit, Universität Heidelberg, 2011.
-
K. Rößger.
Beschreibung von Konfidenzgebieten bei nichtlinearen Parameterschätzproblemen.
Diplomarbeit, Universität Heidelberg, 2011.
-
L. Zhang.
Parameter Estimation and Optimum Experimental Design with An Adaptive of Method of Lines for Time-Dependent Convection-Diffusion-Reaction Problems.
Diplomarbeit, Universität Heidelberg, 2010.
-
D. Janka.
Optimum Experimental Design and Multiple Shooting.
Diplomarbeit, Universität Heidelberg, 2010.
-
M. Gharaviesfahani.
Mathematische Modellierung und Parameterschätzung am Beispiel des Wechselkurses zwischen Iranischem Rial und US-Dollar.
Diplomarbeit, Universität Heidelberg, 2009.
-
V. Schloßhauer.
Strukturausnutzung und Speicherplatzbegrenzung fur hochdimensionale, nichtlineare Optimierung.
Diplomarbeit, Humboldt-Universität zu Berlin, 2009.
-
S. Eichstädt.
A Total-Quasi-Newton Method With Global Convergence For General Nonlinear Optimisation Problems.
Diplomarbeit, Humboldt-Universität zu Berlin, 2008.
-
J. Vesely.
Numerische Integration und Parameteranpassung für epidemiologische Modelle.
Diplomarbeit, Technische Universität Dresden, 2006.
-
G. Rücker.
Automatisches Differenzieren mit Anwendung in der Optimierung bei chemischen Reaktionssystemen.
Diplomarbeit, Universität Heidelberg, 1999.
Supervised Bachelor Theses
-
M. Sauter.
Nichtlineare Optimale Versuchsplanung für schlecht gestellte Probleme.
Bachelorarbeit, Universität Heidelberg, 2016.
-
U. Baumgart.
Normal-Boundary Intersection. Eine Methode zur Lösung multikriterieller Optimierungsprobleme.
Bachelorarbeit, Universität Mannheim, 2016.
-
K. Hermann.
Behandlung von nichtlinearen Randwertproblemen mit der Parameterschätzmethode in VPLAN.
Bachelorarbeit, Universität Heidelberg, 2016.
-
J. Simon.
Der l1-Gauß-Newton-Algorithmus zur robusten Parameterschätzung.
Bachelorarbeit, Universität Heidelberg, 2014.
-
E. Röger.
Implementation of the Levenberg-Marquardt Algorithm for Unconstrained Nonlinear Parameter Estimation in VPLAN.
Bachelorarbeit, Universität Heidelberg, 2014.
-
A. Meßner.
Quantifizierung der Steifheit von Anfangswertproblemen.
Bachelorarbeit, Universität Heidelberg, 2013.
-
S. Lindner.
Skalierung von BFGS Approximationen in einem SQP Verfahren.
Bachelorarbeit, Universität Heidelberg, 2013.
-
B. Görgülü.
Simulation eines Differentialgleichungsmodells für organische Halbleiter.
Bachelorarbeit, Universität Heidelberg, 2013.
-
I. Ahmad.
3D-Simulation eines Industrieroboters.
Bachelorarbeit, Universität Heidelberg, 2012.
-
R. Feukia.
Parallele Ableitungserzeugung für die Optimale Versuchsplanung.
Bachelorarbeit, Universität Heidelberg, 2012.
-
J. Fahrner.
Numerische Lösung und Sensitivitätsanalyse einer gewöhnlichen Differentialgleichung und Berechnung der Kovarianzmatrix zur Parameterschätzung.
Bachelorarbeit, Universität Heidelberg, 2012.