Grundlagen der Informatik

- Einführung in Berechenbarkeit und Komplexität -

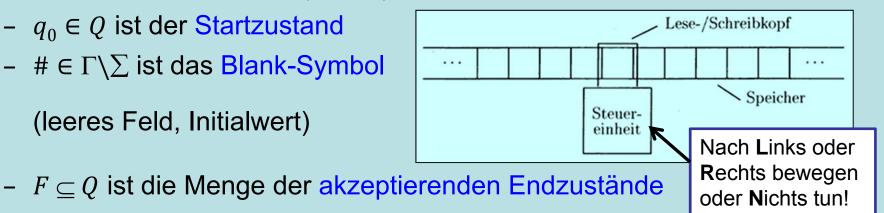
Prof. Dr. Klaus Volbert

Hochschule für angewandte Wissenschaften Fakultät Informatik und Mathematik

Wintersemester 2010/11 Regensburg, 15./16. Dezember 2010

Turingmaschine (Alan M. Turing, 1936)

- Eine deterministische Turingmaschine ist beschrieben durch ein 7-Tupel TM = $(Q, \Sigma, \Gamma, \delta, q_0, \#, F)$ mit:
 - Q ist eine endliche, nichtleere Menge von Zuständen
 - $\Sigma \subseteq \Gamma$ ist ein endliches, nicht leeres Eingabealphabet
 - Γ ist ein endliches, nicht leeres Bandalphabet
 - $\delta: Q \setminus F \times \Gamma \rightarrow Q \times \Gamma \times \{L, N, R\}$ ist die Übergangsfunktion
 - $-q_0$ ∈ Q ist der Startzustand
 - # ∈ Γ\∑ ist das Blank-Symbol (leeres Feld, Initialwert)



- Akzeptanz
 - Eine TM akzeptiert eine Eingabe $x_1, ..., x_n$, wenn gilt:

$$q_0 x_1, \dots, x_n \stackrel{*}{\to} \alpha q \beta \text{ mit } q \in F \text{ und } \alpha, \beta \in \Gamma^*$$

Beispiel (Turingmaschine verstehen)

• TM = $(Q, \Sigma, \Gamma, \delta, q_0, \#, F)$ mit

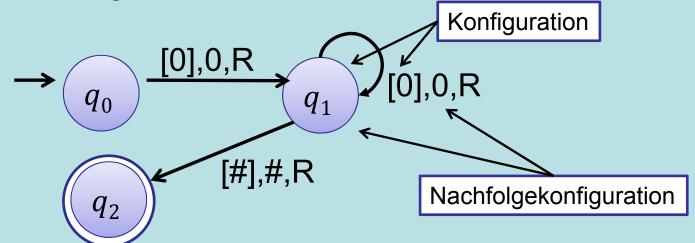
$$- Q = \{q_0, q_1, q_2\}$$

$$-\sum = \{0,1\}, \Gamma = \{\#,0,1\}$$

$$- F = \{q_2\}$$

Grafische Darstellung:

δ	q_0	$q_1^{}$	q_2
#	_	$(q_2, \#, R)$	-
0	$(q_1, 0, R)$	$(q_1, 0, R)$	-
1	-	-	-



- Die TM hält, wenn keine Kante vorhanden ist ("-" in Tabelle)
 (Beachte: DFA musste vollständig sein!)
- Welche Sprache akzeptiert die TM? $L = \{0^n \mid n \ge 1\}$

Beispiel (Turingmaschine entwerfen)

$$L = \{ 1^n 0^n \mid n \ge 1 \}$$

Idee:

- Prüfe, ob die Eingabe aus 1...10...0 besteht
- Wenn ja, dann pr
 üfe ob (Anzahl Einsen) = (Anzahl Nullen)

δ	q_{0}	q_{1}	q_2	q_3	$q_{_4}$	q_{5}	q_6	q_7
#	-	$(q_2, \#, L)$	-	$(q_4, \#, R)$	-	$(q_7, \#, N)$	$(q_2, \#, L)$	-
0	$(q_1, 0, R)$	$(q_1, 0, R)$	$(q_3, \#, L)$	$(q_3, 0, L)$	-	$(q_6, 0, R)$	$(q_6, 0, R)$	-
1	$(q_0, 1, R)$	-	-	$(q_3, 1, L)$	$(q_5, \#, R)$	$(q_6, 1, R)$	$(q_6, 1, R)$	-

Zunächst nur 1en Rechteste 0 streichen Linkeste 1 streichen

Dann nur 0en

Ganz nach linke

Ganz nach links

Ganz nach rechts und Schleife, wenn noch Zahlen da sind, sonst akzeptieren

• TM = $(Q, \Sigma, \Gamma, \delta, q_0, \#, F)$ mit $Q = \{q_0, q_1, ..., q_7\}, \Sigma = \{0,1\}, \Gamma = \{\#, 0,1\}, F = \{q_7\}$

Turing-Berechenbarkeit

• Eine (partielle) Funktion $f: IN^k \to IN$ heißt Turing-berechenbar, falls es eine (deterministische) Turingmaschine TM gibt, die bei Eingabe von $x_1, ..., x_n$ die Ausgabe $f(x_1, ..., x_n)$ liefert und hält, d.h.

$$q_0x_1, \dots, x_n \stackrel{*}{\rightarrow} qy \text{ mit } q \in F \text{ und } y \in \Gamma^* \text{ und } y = f(x_1, \dots, x_n)$$

- Falls TM nicht hält, ist $f(x_1, ..., x_n)$ nicht definiert
- TM-äquivalente Berechenbarkeitsmodelle
 - Registermaschinen (RAM)
 - Goto-Programme (IF...GOTO...)
 - While-Programme (IF...THEN..., WHILE ...DO ...)
 - μ-rekursive Funktionen

Beweis durch Simulation

- Ausdrucksschwächere Berechenbarkeitsmodelle
 - Loop-Programme (IF...THEN..., FOR ...TO ... DO...)
 - Primitiv-rekursive Funktionen

äquivalent

Church'sche These (1936, auch Church-Turing-These)

- These: Die Klasse der Turing-berechenbaren Funktionen ist genau die Klasse der intuitiv berechenbaren Funktionen
- Alternative Formulierungen/Folgerungen
 - Jede Funktion, die überhaupt in irgendeiner Weise berechenbar ist, kann durch eine Turingmaschine berechnet werden
 - Jedes Problem, das überhaupt maschinell lösbar ist, kann von einer Turingmaschine gelöst werden

Anmerkungen

- Church'sche These ist nicht beweisbar, da "intuitiv berechenbare Funktionen" nicht formalisiert werden können
- Anerkanntes Rechenmodell: Von-Neumann-Rechner
- Idealisierte Von-Neumann-Rechner: Registermaschinen
- Registermaschinen sind äquivalent zu Turingmaschinen
- Church'sche These gilt als allgemein akzeptiert

Algorithmus-Begriff

- Interpretation der Church-Turing-These:
 - Bisher und in Zukunft vorgenommene "vernünftige" Definitionen von Algorithmus sind gleichwertig und haben die gleiche Bedeutung wie die bisher bekannten Definitionen!
- Algorithmus = Programm für eine TM
 - = Programm für eine RAM
 - Programm für andere Modelle
 (Goto, While, μ-Rekursion)
 - = Programm in C/C++ Pascal Java C#, ...

Akzeptanz und Entscheidbarkeit

- Im Gegensatz zu einem DFA kann es bei einer TM zu einer Endlosschleife kommen
 - Erinnerung DFA: Endliche Eingabe wird einmal von links nach rechts gelesen und verarbeitet, d.h. die Verarbeitung terminiert

Akzeptanz

- Eine TM M akzeptiert eine Sprache L, falls M alle $x \in L$ akzeptiert (d.h. M gestartet mit $x \in L$ hält in einem akzeptierenden Endzustand)
- Anmerkung: Es kann $x \notin L$ existieren mit M gestartet mit x hält nicht

Entscheidbarkeit

- Eine TM M entscheidet eine Sprache L, falls M die Sprache L akzeptiert und für alle $x \notin L$ nach endlich vielen Schritten in einem nicht akzeptierenden Endzustand hält

Eine Sprache L heißt

- rekursiv aufzählbar (semi-entscheidbar) \Leftrightarrow Es gibt eine TM, die L akzeptiert
- rekursiv oder entscheidbar \Leftrightarrow Es gibt eine TM, die L entscheidet