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Sampling: Time Domain Discretization 

1 A/D Conversion as Two-Dimensional Process 
Time-discrete signals exist at particular time points tn=t0+nꞏT only, where T=1/fS with fS being 
the sampling frequency: xn = x(n) = x(tn). 
 
Value-discrete signals exist with particular values only, typically xoffset+mꞏ with  being the 
lest significant bit (LSB). For communication purposes there exist also signals with 
=f(amplitude), which will not be considered in this chapter. 
 
The transition from Laplace transformation to z-transformation occurs with sampling 
using a constant sampling interval T and is independent of quantization. 
 
Typical we find all 4 forms of signal representations, as illustrated in Fig. 4.1 

Situation in time       |  value example 

a) time-continuous  + value-continuous:  analog circuitry, e.g. RC lowpass 
b) time-discrete  + value-continuous:  switched capacitors 
c) time-continuous  + value-discrete: DAC output 
d) time-discrete  + value-discrete:  digital signal processing 
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Fig. 1: Signals being: (a) analog, (b) time-, (c) value-, (d) time- and value-discrete 
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2 Sampling Analog Waveforms 

2.1 Time-Domain Considerations 

2.1.1 The Shannon-Nyquist Criterion 
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Fig. 2.1.1: Sampling sinusoidal waveforms of with frequency f#, #=a, b, c, at different rates fs, 
then trying to interpolate the samples.  (a) Fa= fa/fs=¼,   (b) Fb= fb/fs/ =½,   (c) Fc=fc/fs=1. 

Fig. 2.1.1 illustrates sinusoidal waveforms with different frequencies f#, sampled with rate fS 
corresponding to sampling interval and relative frequency, respectively: 
 
Ts = 1 / fs  and  F = f / fs. 
 
Some public sampling rates: 

Old telephone:  8 KHz (±3dB band 300...3400Hz) 
Audio data on CD: 44.1 KHz = (1ꞏ2ꞏ3ꞏ5ꞏ7)2 Hz  
Digital Video Broadcasting - Terrestrial (DVB-T):  13.3 MHz 
 
Exercise:  

Up to which relative frequency F=f/fS can curves in Fig. 2.1.1 be reconstructed from samples, 
when samples are interpolated with lowest possible frequency and amplitude? 
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According to the Nyquist-Shannon criterion, a sinusoidal wave can be reconstructed from 
samples, when the sampling frequency is at least twice the sinusoidal waveform's frequency. 
Consequently, the bandwidth that can be can be transmitted in sampled form, is  
 
 fB  ½ fS          fS  2 fB . (1) 
 
During digital signal processing (DSP) we are rather interested in frequencies relative to the 
sampling rate fs than in physical frequencies. Consequently, we do not compute the true 
frequencies f and  but relative frequencies 
 
 F = f / fs = fꞏTs  and    =  / fs =  Ts = 2 F. (2) 
 
According to Shannon and Nyquist correct signal reconstruction requires 
 
 F  ½  <=>    . (3) 
 
Exercise:  
The figure below shows three sinusoidal waveforms. Vertical dashed lines are sampling time 
points. Draw sampled pulses and then reconstruct curves by interpolating with lowest-
amplitude, lowest-frequency sinusoidal waves. Also compute relative frequencies F and . 
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Fig.: Exercise to experience sampling of different sinusoidal waveforms. (Sol. → Fig. 2.1.1) 
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2.1.2 Problems with the Rule of Shannon and Nyquist 

Even when the Nyquist criterion is fulfilled, some problems may occur. In Fig. 2.1.1(b) the 
sampler picks samples exactly at the extrema of the curves. This cannot be guaranteed as 
illustrated in Fig. 2.1.2: 
 
 Fig. part (a) shows a waveform with frequency fB(a)=½fS, however, the sampler does not get 

the curve's extrema. Reconstruction delivers a signal with lower amplitude and phase shift. 
 Fig. part (b) shows a waveform with frequency fB(b)=½fS, however, the sampler gets the 

curve's zeros. Reconstruction delivers a zero signal. 
 Fig. part (c) illustrates sampling of a sinusoidal wave with fB(c)<½fS, the Nyquist criterion is 

fulfilled. Reconstruction delivers a signal with beats. This can be considered composed of 
the original frequency ½fS-f and a second signal with frequency½fS+f. An extremely good 
filter could remove the upper signal, but this is costly. 
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Fig. 2.1.2: Problems close to Nyquist bandwidth fB=fS/2. 
 
 
In practical applications, these problems can be overcome with increased sampling rate, e.g. 
 
fS = 4...10 fB    
 
corresponding to an „Over Sampling Ratio“  
 
OSR = fS/2fB = 2...5 (4) 
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As will be shown later in more detail, sampling is no lowpass filtering! Frequencies >½fs are 
not removed but occur at frequencies in the baseband, i.e. in range 0 ... ½fs. 
 
 
Exercise 2.1.2: the figure below shows three sinusoidal waveforms and vertical dashed lines 
as sampling time points. Draw the sampled pulses and then reconstruct curves from them 
interpolating with lowest-amplitude, lowest-frequency waves. Also compute the relative 
frequencies F and . 
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Exercise Fig. 2.1.3: Sampling of frequencies close to fS/2. (Solution → Fig. 2.1.2) 
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Frequency-Domain Considerations 

Hanalog(f)

f0

(a)

f-fS fS 2fS 3fS-2fS

Hsampled(f)(b)

fB-fB

0 fB-fB  

Fig. 2.2-1: Frequency spectrum (a) before and (b) after sampling with rate fS. 
 
 
Fig. 2.2(a) shows the spectrum of an analog signal. Sampling in time-domain with rate fS 
translates it to the spectrum illustrated in Fig. part (b). Further spectra are added around integral 
multiples of the sampling frequency fS. The baseband around f=0 is essentially the same and 
can be recovered by lowpass filtering.  
 
 
Fig. 2.2-2 illustrates an effect called aliasing. The pulse is very short, but the reconstruction has 
to occur in the band 0...½fS. This effect is called aliasing, which is completely different from 
lowpass filtering. 
 
 
Fig. 2.2-2: 
The sampler picks a very short 
pulse, which is later reconstructed 
at frequencies in the range 0...½fS. 

s(t)

n=t/T0 1 2 3 4 5 6

 
 
Fig. 2.2-3 illustrates different sampled signal spectra to gain an understanding of aliasing. 
 In Fig. part (a) the signal's bandwidth fBa < ½fS and the spectra can be separated.  
 In Fig. part (b) the signal's bandwidth is at the limit of fBb = ½fS and spectra can 

theoretically be separated with an infinitely good lowpass. 
 In Fig. part (c) the signal's bandwidth is beyond the limit: fBc > ½fS. Spectra overlap and 

the original baseband 0...fBc cannot be recovered any more. This is what we call aliasing. 
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Fig. 2.2-3: (a) Spectrum of oversampled signal, (b) sampling at Nyquist rate, (c) sampling 
below Nyquist rate and consequently aliasing: Periodic spectra overlap; they cannot be 
distinguished by lowpass filtering any more. 

 
 
This example illustrates that signal spectra of a sampled function x(nT) of x(t) can be recovered 
if  
 
 x(t) has a band limited Fourier transform X(f) with X(f)=0 when f>fB and 
 sampling rate 1/T = fs > 2fB  
 
The energy of all higher signal frequencies is sampled to the alias frequency falias≤½fS according 
to  
 
falias = fin - Nfs    with   N = round(fin / fS). 
 
Do not worry about negative frequencies; they might indicate a phase shift, which does not 
matter when we have a frequency shift. (Remark: All real sinusoidal waves have their half energy at a 
positive and the other halt a negative frequency: cos(t)=½(ejt+e-jt) and sin(t)=(ejt-e-jt)/(2j). If the positive 
frequency part becomes negative, then the corresponding negative part becomes positive.) 
 
Exercise 2.2: You record music at a rate of fS=10KHz. The sampled accord contains 3 KHz, 6 
KHz, 12 KHz and 24 KHz. Which frequencies do you hear when you hear your sampled data? 
 
Solutions:   3 → 3,   6 → |6-10|=4,   12 → |12-10|=2,   24 → |24-2x10|=4 
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3 Signal-Value Hold Circuits 

3.1 Why do we need Hold Circuits? 

 
 
 
 

(a) Architecture of a SAR 
ADC using a DAC in 
the feedback branch. 

 

(b) Conversion process: 
approximate UDAC,out 
to UADC,in by trial and 
error from most to 
least significant bit 

 

Fig. 3.1: Principle of successive approximation register (SAR) A/D conversion. Phase a and b 
in the figure’s part (b) can be combined in a single phase. 

 
 
Fig. 3.1 illustrates the principle of the most common A/D converter (ADC) architecture: The 
successive approximation register (SAR) type. The successive logic starts from all bits zero to 
setting the most significant bit in phase a, the D/A converter (DAC) converts it to analog and 
the comparator compares it with the analog input signal. If the DAC output is below input signal 
UDACin, this bit is confirmed in phase b, otherwise it is set back in phase b. After a decision 
about the most significant bit has been taken, this bit is stored in a shift register and the 
procedure starts with the next significant bit. 
 
It is obvious from Fig. part (b), that input signal UDACin must be held constant during evaluation 
of one bit after the other. This holding of the input voltage is the task of a sample and hold 
circuit, which is a mathematical idealization of the physically realizable track and hold circuit. 
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3.2 Sample & Hold Mathematics, Track & Hold Circuits 
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Fig. 3.2: (a) Sampling of a sinusoidal waveform (dashed) at Nyquist rate. The track & hold 
circuit hold the sample value constant during the conversion time of the ADC. (b) T&H 
circuit idealized (c) T&H circuit realized, (d) S&H mathematics uses Dirac pulses, 
(e) Track & hold phases Thold (TH) and Ttrack (TT). 

 
 
The mathematical concept of sampling a time-continuous function s(t) is for single samples  
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with δ(t) being the Dirac function. This is useful for mathematics but difficult to realize. 
 
For practical sampling applications, we find track & hold (T&H) circuits. The maximum 
sampling rate obtainable with track-time TT and hold-time TH  is 
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4 Anti-Aliasing Filters 

4.1 Nyquist and Over-Sampler Architectures 

 

Fig 4.1: (a) Standard system to translate an analog voltage to a digital data stream. 
(b) ΔΣ A/D conversion: lowpass filtering shifted to the digital side. 

 
 
Fig. 4.1(a) illustrates the standard A/D conversion system. The anti-aliasing (AA) filter must 
be before the sampler, which is followed by the ADC. 
 
Fig. 4.1(b) illustrates the difference for a system based on  modulation (DSM). The anti-
aliasing filter before the sampler is either strongly relaxed or removed, i.e. lowpass filtering is 
shifted from the analog to the digital side. This a driving motivation to use DSM. 
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4.2 Analog Anti-Aliasing Filters for Nyquist Samplers 

 
Fig. 4.2:  
Zur Dimensionierung eines Anti-
Aliasing-Filters 

 
 
To avoid aliasing, frequencies >½fS must be suppressed by anti-aliasing filters. Fig. 4.2 
illustrates the asymptotes of such a filter. Formula using lg=log10: To obtain an attenuation AdB 
within frequency range fB...fA the filter needs an order of at least  
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Exercise: A telephone signal is sampled at rate fS=8KHz. Guaranteed bandwidth is fB=3.4KHZ 
for an alias suppression of 60dB. Which filter order is required? (Solution below) 
 
 
A particularly suitable filter type for moderate orders is the Butterworth filter with its 
characteristics of  
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The Butterworth filter has a  
 minimum ripple as the first 2N-1 derivatives are zero in f=0, 
 |HBW(fB)|=-3dB for any N, with fB being the cross point of the asymptotes. 
However, it is difficult to build analog lowpass filters with orders > 8, as device tolerances 
become critical. The standard solution to this problem is a higher sampling rate. 
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4.3 Anti-Aliasing Filters for Over Samplers 

fC fs/2 fsfD fn1f'n
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Fig. 4.3: Situation in frequency domain. 
 
 
Due to oversampling, the anti-aliasing filter was shifted to the digital side, having cut-off 
frequency fC and obtaining damping at fD. On the digital side, any frequency domain 
characteristics is periodic in sampling frequency fs. 
 
If an analog anti-aliasing lowpass is required, then it may be strongly relaxed as attenuation 
needs to be obtained at fA=fS – fD. 
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4.4 Spatial Aliasing 
(a)

(b)

(c)

(d)
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Fig. 4.4: Alle Strukturelemente in Fig. part (a) können in Fig. part (b) aufgelöst werden.   
Fig. part (c) hat eine Grundfrequenz, die aufgelöst werden könnte, aber in (d) nicht wird.   
Fig. part (e) hat eine nicht mehr auflösbare, räumliche Frequenz, (f) ist grob fehlerhaft. 

 
 
Aliasing does not only occur over time axis. Fig. 4.4 illustrates spatial aliasing. 
 
Fig. part (a) shows a periodic row of green squares. Fig. part (b) shows pixels to represent 
them. The arrows make the decision if a pixel is green or white. All green squares can be 
represented by the pixel density. 
 
Fig. part (c) shows yellow squares on an image. Fig. part (d) illustrates that some of them are 
completely omitted, although Nyquist criterion for sinusoidal waves would predict that they 
could be mapped. 
 
Fig. part (e) contains sufficiently wide red squares so that they cannot be omitted, but the 
frequency is subject to aliasing: 3rd and 4th square form one big red square in part (f). 
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5 Changing Data Rates 

5.1 Retrieve Time-Continuous Baseband  

5.1.1 The Dirac Pulse Concept 

A Dirac pulse is assumed to be infinitely narrow having a 
pulse area (and consequently integral) of 1. The integral over 
aꞏδ(t-t1) is a. 

t1 t

a a (t-t1)

 
Fig. 5.1.1: Dirac function 

 
 

5.1.2 Impulse Response of the Ideal Lowpass 

Fig. 5.1.2: 
Cutout of 
impulse 
response of 
the ideal 
lowpass with 
cut-off 
frequency 
½fS. 
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The impulse response of the ideal lowpass with cut-off frequency fC=fS/2 is a sinc function 
having the same zeros like a sinusoidal function with frequency fC. It is defined as 
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We see that   
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The impulse response of the ideal lowpass with cut-off frequency fC=fS/2 has only one tap 
different from zero. 
 
Remark: An ideal lowpass does exist in real world, because it is not causal, i.e. it would have 
to begin with its impulse response before the impulse arrived. 
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5.1.3 Interpolating Sampled Values Using an Ideal Lowpass 

Fig. 5.1.3: 
Interpolation 
of samples 
with ideal 
lowpass. 
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timeT 2T 3T

4T 5T

6T

 

 
 
Fig. 5.1.3 shows arbitrary samples sn(tn) at time points tn=nT. For better overview only three 
impulse responses of the ideal lowpass with cut-off frequency fC=fS/2 were printed: h(2T) with 
blue points, h(3T) black solid and h(4T) red dashed. Any impulse response crosses "its" impulse 
and is zero at any other sampling time point. As the ideal lowpass is an LTI (linear and time 
invariant) system, it sums all impulse responses. This sum is its output signal, which is crossing 
all sampled values. 
 
As any of the impulse responses is infinitely smooth (i.e. all derivatives are smooth), it is 
obvious that also their sum has to be infinitely smooth. This way using a sum of "shape 
functions" for interpolation is a method widely used in mathematics (e.g. Lagrange 
interpolation). 
 
 
 

5.2 Up-sampling: Redundant Increase of Sampling Rate  

A CD delivers a data stream of 44.1 KHz, so that sound can be replayed with 22.05 KHz. 
Fig. 5.2 illustrates, that it is difficult for an analog smoothing filter to separate the spectra 
around f=0 and f=fS. To make things easier we want to up-sample the CD's data stream by a 
factor 4. 
 
With digital filters we can modify the data stream to the result shown in Fig. part (e), so that 
the demands to the analog smoothing filter are strongly relaxed, which is indicated by lowpass 
|HTP,ana(f)| in Fig. part(f). 
 
Up-sampling causes redundancy, because we can remove the added samples without loss of 
information. This sample removal is called down-sampling or decimation. 
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Fig. 5.2: Up-sampling a signal by adding additional samples without changing the baseband 
information. 
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The Approach in Fig. 5.2: 
 Fig. part (a) shows an analog signal as shape and origin of sampled pulses. Sampling 

frequency fS is slightly higher than 2fB.  
 Fig. part (b) shows the frequency spectrum of the sampled pulses in Fig. part (a).  
 Fig. part (c) we added zero samples into any gap of samples in Fig. part (b). To do so we 

had to increase the clock frequency by a factor four: f2=4S. 
 Fig. part (d) shows the frequency spectrum of Fig. part(c). As adding zeros did not change 

the time-domain function in (c) compared to (a), there cannot be a change in the frequency 
domain function of (d) compared to (b). 

 Fig. part (e) is the situation of applying a digital filter HTP,dig(f) indicated by dashed lines in 
part (d). 

 Fig. part (f) illustrates that the spectra around fS, 2fS and 3fS were removed by the digital 
lowpass. HTP,ana(f) indicates the analog smoothing lowpass - which will most probably not 
required as nobody can hear the frequencies around fS2. 

 
Remark: High-order lowpasses are nowadays easier build in digital than in analog technology. 
Furthermore, digital transfer functions can be exactly reconstructed, while analog filters depend 
on device tolerances. 
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5.3 Decimation (=Down-Sampling) 
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Fig. 5.3: Down-sampling a data stream by a factor four. 
 
 
Decimation or down-sampling is sampling rate reduction. It is the inversion of up-sampling.  
 
The sequence in Fig. 5.3 illustrates: 
 Fig. part (a) shows a digital signal limited to f<fs/8, i.e. with oversampling ratio OSR > 4.  
 Fig. part (b) shows the frequency spectrum of (a). 
 Fig. part (c) shows the decimated signal of (a): 3 of 4 samples were removed. 
 Fig. part (d) illustrates the frequency spectrum of (c) after lowering the sampling rate by a 

factor 4. 
 
 
Note: Decimation or down-sampling is a reduction of a time-discrete sampling rate. It is 
typically preceded by a lowpass to avoid aliasing. 
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5.4  Sub-Sampling 
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Fig. 5.4: (a) Demodulation of an amplitude modulated Signal by sub-sampling; (b) the carrier 
frequency is not exactly an integral multiple of the sampling frequency, we get an erroneous 
difference signal; (c) optimal (green) and worst (red) sampling time point; (d) sampling 
signal in time domain. 

 
 
Fig. 5.4 (a) illustrates, that aliasing can be used to demodulate amplitude modulated (AM) 
signals.  
 
Fig. part (b) illustrates, that this kind of AM demodulation has to sample the correct phase 
(green) to pick the tops of the carrier signal (green). When the frequency relation fcarrier/fS is not 
exactly integral, we generate additionally erroneous difference signals. 
 
Fig. part (c) illustrates, that the optimum carrier phase to sample is its maximum (or minimum). 
This yields maximum sample amplitude a1, minimum error e1 and consequently minimum e1/a1, 
caused by phase noise of the sampling signal. The error e2 occurs by same phase noise near the 
carries zero crossing (a2=0), maximum slope and consequently e2/a2→∞. 
 
Fig. part (d) shows the positive edge of the sampling clock and its phase noise. 
 
 
Note: Sub-sampling takes advantage of aliasing. It typically comes with a PLL (Phase Locked 
Loop) to guarantee sampling at exact phase and frequency. 
 
 



M. Schubert A/D and D/A Conversion OTH Regensburg 

 - 20 -  

Change of Signal Sampling Rate:  
 
Up-sampling (interpolation) is increasing sampling frequency by an integral factor by 
introduction of additional sampling time point with sampling value zero and subsequent 
interpolation (lowpass, anti-aliasing) filtering.  
 
Down-sampling (decimation, re-sampling) is lowering the sampling frequency by an integral 
factor avoiding aliasing. Therefore, anti-aliasing lowpass filters are required before sampling. 
 
Sub-sampling is taking advantage of aliasing for demodulation and comes typically with a 
phase-locked loop (PLL) 
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