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Abstract. After a short introduction to the required Matlab commands 
linear and time-invariant (LTI) Matlab models are introduced and 
examples given. 

 
 

1 Introduction  
Matlab (Matrix Laboratory) [1], [2], [3] is a useful tool for many technical applications and 
also for the investigation of linear and time-invariant (LTI) systems, typically modeled in the 
s and z domain. 
 
Availability of the software. Matlab is not free. Open source freeware with same 
functionality (except some toolboxes) can be obtained from Scilab (Scientific Laboratory) [4] 
or Octave [5], [6], [7]. As graphics software gnuplot [8] or jhandles [9] may be added. The 
latter is based on Java and more similar to Matlab, gnuplot is faster (and some people think 
more beautiful). 
 
Digital filters should – with respect to filter quality – be directly designed in the z domain 
instead of being translated from s to z. The s  z translation technique, demonstrated in 
section 4.3, is recommended for control systems only. 
 
 
The organization of this laboratory is as follows:  

Chapter 1  introduction. 

Chapter 2  introduce some basic theory about the coherence of Laplace s-domain and z-
domain models. 

Chapter 3  introduces the required Matlab commands.  

Chapter 4  demonstrates how to write self-made Bode diagrams in s and z.  

Chapter 5  is an extraction of the “LTI Systems” chapter of the Matlab book [3]. 

Chapter 6  demonstrates how the functionality of the Bode-command can be realized with 
some self-made Matlab statements.  

Chapter 7 draws relevant conclusion,  

Chapter 8  offers some references. 
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2 Theory 
2.1 Application Fields for Laplace and z-Transformation 
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Fig. 2.1-1: (a) Time-continuous filter,   (b) time-discrete filter 
 
 
Fig. 2.1-1(a) illustrates a time-continuous and a time-discrete filter typically modeled with 
Laplace transformation using the impedances sL for an inductor and 1/sC for a capacitor. The 
transfer function is obtained with  s=j. 
 
Fig. 2.1-1 (b) illustrates a filter type using boxes with transfer function z-1. These boxes do 
nothing else than delaying all frequencies by the same amount of time, typically termed T. 
Seems simple, doesn’t it?  
 
 Can you construct an analog circuit delaying all frequencies by the same amount of time? 
 
An approximation for the z-1 
elements in Fig. 2.1-1(b) 
could be wires of same 
length. In the digital world 
delay elements are realized 
by memory as illustrated in 
Fig. 2.1-2. 
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Fig. 2.1-2: (a) Delay element and (b) digital realization
 
z-1 in the figure above delays the data samples by integral multiples of the sampling clock 
interval, T=1/fs, with fs being the sampling frequency. 
 
Although z-1 is not bound to time-discrete systems the general rule of thumb applies in at least 
99% of all cases: 
 

Describe time-continuous models using s and time-discrete models using z. 
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2.2 The Relationship Between s and z  
Let X(j) be the Fourier transformed of the time domain signal x(t): X(j)=F{x(t)}.  
 
 What happens to X(j) when x(t) is delayed by T becoming x(t-T)?  
 
It is shown in the appendix that the time-domain delay T corresponds to a frequency-domain 
phase shift  φ =e-jT. Using z=ejT we can model that as multiplication of X(j) by z-1: 
 

 When   F{x(t)}  = X(j)   with  F  being the Fourier Transformation,  
 then   F{x(t-T)} = X(j)  z-1  with  z = e jT. 
 
The relationship between Laplace variable z = e jT is illustrated in Fig. 2.2. We define the 
relative frequencies F=f/fs=fT and =/fs=T. Some observations: 
 
 Frequency f=0 corresponds to z=1, frequency f=½fs  F=½  = corresponds to z=-1. 
 The behavior of |H(z)| becomes periodic for  F>½ . 
 The j-axis becomes the unit circle. 
 Stable systems in the Laplace domain s have all their poles sp in the left half-plane: <0. 
 Stable systems in the z domain have all their poles zp within the unit circle: |zp|<1. 
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Fig. 2.2: (a) Laplace domain s   and   (b) corresponding z-domain. 
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3 Using Matlab 
3.1 Matlab Basics 
Getting Help: 

To get help e.g. for the command sqrt type: 
> help sqrt 
 
Scalars: 

Start Matlab on your computer. Type into the Matlab Command Window: 
> a=3 
> A = a*a 
> a 
 
Note: Matlab is case sensitive: a  A .  
A ; (semicolon) after a command suppresses echo on screen. 
A % (percent) sign comments the rest of the line. 

Predefined constants: to check for  pi=  and  i= 1   type 
> pi 
> i^2 

Its easy to redefine them:  
> i=0:10 
> j=sqrt(-1)  % sqrt = square root 
> j, j^2 
 
 
Directories and Files: 

Type  ls  to list directory. "." is the actual working directory that can be resolved with pwd 
and ".." is the actual parent directory in the hierarchy: 
> pwd  % treename of actual working directory 
> ls   % list directory 

Go to a directory of your choice using change directory (cd): 
> cd <treename>   % use a valid treename for <treename> 

Open an editor window: 
> edit % an editor window will open 

Write into the editor window 
function y = square(x) 
y = x*x; 

Save it with filename square.m. Using command ls you should be able to observe this file. 
Type into the Matlab Command Window: 
> square(5) 

You can save all the following commands in a command file. There is no need to begin it as 
function. 
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Vectors: 

Define a vector using start:step:stop.  
> vec1 = -5:5 

Step=1 is default and can be omitted. 
> vec2 = -10:2:10 

Use brackets to create a composed data object (corresponds to a C struct): 
> vec3 = [-3 5 3 2 2 2 6] 

Define a frequency axis: 
> vec3 = [-3 5 3 2 2 2 6] 
 
Operations with Vectors: 

Try the following commands and explain them: 
> vec = 1:3 
> vec 
> vec' 
> vec*vec 
> vec*vec' 
> vec.*vec 
> x = -10:0.5:10; 
> y1=x.*x.*x; 
> y2=x^3; 
> y2=x.^3; 
 
Plot Commands: 
> plot(x,y1) 
> grid on 
> plot(x,y1,x,y2+100); grid on 

If the plot command has only one argument vector of real elements only, Matlab uses the 
index as abscissa. A Matlab vector does always begin with index 1: 
> plot(y1) 
> stem(y1), grid on 
> hold on; plot(y1); hold off; 

If the plot command has only one argument vector with complex elements, Matlab uses 
abscissa for the real and the ordinate for the imaginary part of the numbers. By default letter i 
is the square root of –1: 
> F=[0:8]/8 
> z=exp(i*2*pi*F)  % you will get complex numbers now 
> plot(z) 
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4 Computing Frequency Responses of LTI Models 
4.1 Time-Continuous Modeling 

4.1.1 Given Time-Continuous System of 2nd Order 

IN the time-continuous domain the Fourier transformation 
 

 




 dtetxtxFjX tj )()}({)(  (4.1-1) 

 
is useful but has some problems, amongst others with convergence. Such problems are 
ameliorated by Laplace transformation 
 

 




 dtetxtxLsX st)()}({)(    with    s= α + j. (4.1-2) 

 
Using the so-called Doetsch symbol we write x(t)  X(s) and x’(t)  sX(s). In the s-
domain symbol the impedance of a capacitor C is expressed as 1/sC and the impedance of an 
inductor L as sL.  
 
Application example: 
Bode diagram of a 2nd order transfer function, 
A0: DC-amp., f0 cut-off freq., D damping par.: 
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Listing 4.1-1: Function f_dB in file f_dB.m: 
function dB = f_dB(x) 
dB = 20*log10(x); 
 
 
Listing 4.1-2: Generate Bode diag. of H(s) 
% Bode diagram 
f  = 0:1:10000; 
A0 = 1; 
D  = 0.1; 
f0 = 100; 
j  = sqrt(-1); 
s  = j*2*pi*f; 
omega0 = 2*pi*f0; 

 
Fig. 4.1: Bode diagram generated with 

listings 4.1-1 and 4.1.2. 
Hs = A0*omega0^2./(s.^2  +2*D*omega0*s  +omega0^2); 
 
subplot(211); semilogx(f,20*log10(abs(Hs)));  
grid on; ylabel('Amplitude [dB]'); 
 
subplot(212); semilogx(f,angle(Hs)*180/pi);  
grid on; ylabel('Phase [°]'); 
 
Applying a Matlab operator element wise: Let x =[1 2 3], then 1./x=[1 1/2 1/3],  x.^2=[1 4 9]. 
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4.1.2 Time-Continuous System of 2nd Order  
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Fig. 4.1.2: Time-continuous circuits with zeros and poles on the j axis. 
 
 
Prepare the formulae at home. In the laboratory spend maximal a ½ hour on this sub-chapter. 
 
Compute poles and zeros for the 4 circuits in the Fig. above. Start with R=1K, L=1H, 
C=1F. Then cou can modifiy the values. 
 
Simulate the circuit and demonstrate with Spice or Matlab: 
 A zero on the j axis is a notch in the zero frequency. 
 A pole on the j axis is an oscillator in the pole frequency. 
 
(PS: The author had problems with LTspice, most probably due to round-off errors.) 
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4.2 Time-Discrete Modeling 

4.2.1 Using the Discrete Fourier Transformation 

Let x[n] be a time-discrete function x[n]=x(tn) with tn=nTs where n=0...N-1 and Ts sampling 
interval, fs=1/Ts sampling frequency. In this case we have to apply the Discrete Fourier 
Transformation (DFT) defined by 
 

Nknj
N

n
k enxnxFfX /2

1

0
][]}[{][ 


      with    sk f

N

k
f   ,   k=0...N-1. (4.2.1) 

 
A particular form of the DFT is the numerically very efficient Fast Fourier Transform (FFT) 
used as function fft in the listing below. 
 
Listing 4.2.1: Matlab code of figure right. 
Top-down: Lowpass impulse response hlp, 
linear and logarithmic transfer function 
fft(hlp), test-input signal x and filtered output 
signal y. 
 
% Bode plot by FFT 
Order=20; 
Fg=0.2; 
% Lowpass without window function: 
hlp=sinc(2*Fg*[-Order/2:Order/2]); 
hlp=hlp/sum(hlp); 
 
figure(1) 
subplot(511) 
stem(hlp); grid on; 
hold on; plot(zeros(1,Order+1)); 
hold off; ylabel('hlp'); 
axis([1 Order+1 -0.2 0.5]); 
 
%------- computation of FFT ---------- 
F  = (0:Order)/Order; 
Hlp = fft(hlp); 
%------------------------------------- 
 
subplot(512) 
plot(F,abs(Hlp)); grid on; 
axis([0 1 -0.1 1.2]); ylabel('|Hlp|'); 
 
subplot(513) 
plot(F,f_dB(abs(Hlp))); grid on; 
axis([0 1 -60 10]); hold off; 
ylabel('|Hlp| [dB]'); 
 
t=0:100; F_low=0.1; F_high=0.4321; 
x=sin(2*pi*F_low*t)+sin(2*pi*F_high*t);
y=conv(x,hlp); 
 
subplot(514); plot(t,x);  
grid on; ylabel('FilterIn'); 
 
subplot(515); plot(t,y(1:length(t))); 
grid on; ylabel('FilterOut'); 

Fig. 4.2.1: Matlab response to listing 4.2.1:
Top - down: Lowpass time-domain impulse 
response, frequency domain responses line-
ar and in dB, input signal, filtered output. 
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Explanations on the Matlab code used:  

 Matlab function conv(x,hlp) performs a convolution x*y, which has the length of 
length(x)+length(y)-1. 

 Function f_dB was declared in listing 4.1.1. 

 Matlab function fft(x) performs a fast Fourier transformation delivering complex 
numbers. 

 Matlab function abs(fft(x)) delivers the amplitude curve within Bode diagram. 

 Matlab function angle(fft(x)) will deliver the phase information of the Bode diagram. 

 The filter is obviously poor but it separates F_low<Fg from F_high>Fg quite well as 
illustrated in the two lowest subplots. 

 plot(x,y) plots a line connecting points (xi,yi) of the two vectors x, y of same length.  

 plot(Ax,Ay,Bx,By,Cx,Cy) plots three lines connecting points (Axi,Ayi), (Bxi,Byi), 
(Cxi,Cyi). 

 plot(r) with r being a vector of real numbers uses the indices of r, 1,2,...length(r), as 
abscissa. 

 plot(c) with c being a vector of complex numbers plots in the complex plane 
(Re{c},Im{c}). 

 
 
Problems: 

The DFT is defined for periodic functions only. This problem can be overcome by 
assuming that the actual data vector is repeated periodically. However, this bears 
impurities if such a periodic repetition of the data vector disturbs the harmonic 
behavior of the represented frequencies. It is nearly impossible to avoid this problem, 
since the recorded frequencies may be unknown before application of the DFT. A 
possible amelioration of this problem can be obtained by the application of window 
functions. Furthermore, the DFT requires high computational effort. 

The FFT requires that the data vector consists of N=2M samples with M being an 
integer. If this condition is not fulfilled, the rest of the data vector has to be filled, e.g. 
with zeros. 

Note that N time-domain values deliver N frequency-domain values. Consequently the 
resolution of the transfer function in Fig. 4.2.1 is quite rough and cannot be improved. 
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4.2.2 Using the z Transformation 

Let  h(n) = a0, a1, a2, ... ak  be the impulse response of a time-discrete filter and x(n)=x(tn) a 
sampled waveform, whereat tn=nT with T sampling interval. Then y(n) computes as 
convolution 
 

 


k

i
ik inxaknxanxanxanxanxnhny

0
210 )()(...)2()1()()(*)()( . 

 
Convolution in one domain (here time) corresponds to a multiplication in the other domain, 
here frequency represented by z=esT: 
 

)()()()(...)()()()(
0

2
2

1
10 zXzHzazXzXzazXzazXzazXazY i

k

i
i

k
k  



  

 

and consequently   i
k

i
i zazH 




0

)(  . (4.2.2) 

 
The only differences between listings 4.2.1 and 4.2.2 is (except the 1st comment line) in the 
computation of Hlp and the relative frequency F, which has significantly more points for the z 
transformation. Figures 4.2.1 ad 4.2.2 differ only in the 2nd and 3rd subplot. Here the higher 
resolution of the z transformation becomes visible. Furthermore a need to fill the hlp vector 
with zeros to 2M taps as done for the FFT is not given for the z transformation. 
 
For recursive filters we have 
 

)(

)(
)(

1

0

zB

zA

zb

za

zH
j

k

j
i

i
k

i
i













  

 
In this case compute the polynomials A(z) and B(z) and divide them. 
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Listing 4.2.2: Matlab code of figure right. 
Top-down: Lowpass impulse response hlp, 
linear and logarithmic transfer function 
Hz=Z{hlp}, test-input signal x and filtered 
output signal y. 
 
% Bode plot by z Transform 
Order=20; 
Fg=0.2; 
% Lowpass without window function: 
hlp=sinc(2*Fg*[-Order/2:Order/2]); 
hlp=hlp/sum(hlp); 
 
figure(2) 
subplot(511) 
stem(hlp); grid on; 
hold on; plot(zeros(1,Order+1)); 
hold off; ylabel('hlp'); 
axis([1 Order+1 -0.2 0.5]); 
 
%---computation of z Transformation--- 
F=0:1e-5:1; 
j=sqrt(-1); 
z=exp(j*2*pi*F); 
Hz = zeros(1,length(F)); 
for i=0:Order; 
   Hz = Hz + hlp(i+1)*z.^-i; 
end; 
Hlp = Hz; 
%------------------------------------- 
 
subplot(512) 
f=(0:Order)/Order; 
plot(F,abs(Hlp)); grid on; 
axis([0 1 -0.1 1.2]); ylabel('|Hlp|'); 
 
subplot(513) 
plot(F,f_dB(abs(Hlp))); grid on; 
axis([0 1 -60 10]); hold off; 
ylabel('|Hlp| [dB]'); 
 
t=0:100; F_low=0.1; F_high=0.4321; 
x=sin(2*pi*F_low*t)+sin(2*pi*F_high*t);
y=conv(x,hlp); 
 
subplot(514); plot(t,x);  
grid on; ylabel('FilterIn'); 
 
subplot(515); plot(t,y(1:length(t))); 
grid on; ylabel('FilterOut'); 
 

 
Fig. 4.2.2: Matlab response to listing 4.2.1:
Top - down: Lowpass time-domain impulse 
response, frequency domain responses line-
ar and in dB, input signal, filtered output. 
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5 Matlab’s Linear and Time-Invariant (LTI) Systems 
5.1 Time-Continuous Systems 
Table 4.1: Representation of time-continuous LTI systems: 

Command description 
TF tf(num,den) Transfer Function Polinomials in the Laplace variable s  

ZPK zpk(z,p,k) Zero-Pole-Gain Pole-Zero-Diagram 
 
5.1.1 Laplace Transfer Function Representation: tf(num,denom) 

General description in the Laplace domain:  
0

1
1

0
1

1

...

...

)(

)(
)(

bsbsb

asasa

sden

snum
sH

n
n

m
m




  

 
num: numerator (deutsch: Zähler),   den: denominator (deutsch: Nenner) 
 
> num_vector = [am ... a1 a0] 
> den_vector = [bn ... b1 b0] 
> Hs = tf(num_vector, den_vector) 
 

Example  
122

10
)(

231 



sss

s
sH  

 
> Hs1 = tf([1 10], [1 2 2 1])   
 

Transfer function: 
       s + 10 
--------------------- 
s^3 + 2 s^2 + 2 s + 1 

 

Alternatively: 
> s = tf('s')         % declare s to be the Laplace variable 
 

Tansfer function 
     s 

 
> Hs2 = 20/((s^2 + 0.5*s + 1)*(s+1)) 
 

transfer function: 
           20 
------------------------- 
s^3 + 1.5 s^2 + 1.5 s + 1 

 

Observe Bode diagram, step and impulse response of these functions: 
> bode(Hs1,Hs2) 
> step(Hs1,Hs2) 
> impulse(Hs1,Hs2) 



M. Schubert Lab2: LTI System Modeling Using Matlab M. Schubert 

 - 14 -

5.1.2 Laplace Pole-Zero-Gain Representation: zpk(z,p,k) 

General pole-zero-gain representation in s:   
)(...)()(

)(...)()(
)(

,2,1,

,2,1,

nppp

mnnn

ssssss

ssssss
ksH




  

 

Example:   
3.01.1

33
)(

2 



ss

s
sHTF   

)6.0)(5.0(

1
3)(





ss

s
sH ZPK  

 
Matlab input: 

> Htf=tf([3 -3], [1 11 30]); 
> Hzpk=zpk([1], [-5 -6], 3); 
 
Alternatively: declare s as Laplace-Variable and write polynomial using +, -, *, /, ^: 

> s = tf('s')    % s als Laplace-Variable deklarieren 
> Hs1 = (3*s-3) / (s^2 + 11*s + 30) 
> Hs2 = 3*(s-1) / ((s+5)*(s+6)) 
 
 

5.1.3 Switching the Representation: zpk(tf) the tf(zpk) : 

> Htf_of_Hzpk = tf(Hzpk) 
> Hzpk_of_Htf = zpk(Htf) 
 
Note: The latter example illustrates a method to find the nulls of a polynomial. 
 
A conjugate-complex pole-pair comes as 2nd order polynomial. Examples for 2nd and 3rd 
order Butterworth lowpasses. Try: 

> Hbw2 = tf([1],[1 sqrt(2) 1]), bode(Hbw2) 
> Hbw2_zpk = zpk(Hbw2), bode(Hbw2_zpk) 
> Hbw3 = tf([1],[1 2 2 1]), bode(Hbw3) 
> Hbw3_zpk = zpk(Hbw3), bode(Hbw3_zpk) 
> bode(Hbw2,Hbw2_zpk,Hbw3,Hbw3_zpk) 
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5.2 Time-Discrete Systems 

5.2.1 Declaring LTI Systems in the z-Plane 

-bk

z-1

yn,Y(z)

xn , X(z)
a2

-b2

z-1

-b1

z-1

a1ak d0

 

Fig. 4.2.1: Time-discrete filter in the first canonical direct structure 
 
 
Figs. 2.1-1(b) shows the first and Fig. 4.2.1 the second canonical direct structures of the time-
discrete filter. The coefficients are directly visible in the polynomial representation as shown 
on the left hand side of the example below: On the right hand side we see the polynomials 
factorized into their poles and nulls. 
 
 
Table 4.2: Representation of time-discrete LTI systems: 

Model 
Example: 30.011.0

33
)(

2 



zz

z
zHTF  

)6.0)(5.0(

1
3)(





zz

z
zHZPK  

Matlab: Htf = tf([3 3],[1 0.11 0.30],Ts) Hzpk=zpk([-1],[-0.5 –0.6],3,Ts) 

 

The time-discrete model is indicated by the additional delay Ts caused by a delay element  z-1. 
If you do not want define a particular time set Ts=-1. Matlab input examples: 

> % generate transfer function using tf and zpk: 
> Htf  = tf([3 3], [1 0.11 0.30], -1)    % Ts undefined 
> Hzpk = zpk([-1], [-0.5 –0.6], 3, 1e-4) % Ts=1/10KHz 
 
> % Translation into the other model type: 
> Htf_from_Hzpk = tf(Hzpk) 
> Hzpk_from_Htf = zpk(Htf) 
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5.3 System Translation Between s- and z-Planes 
Table 4.3: Matlab commands for changing the domain of an LTI system: 

c2d continuous to discrete z-domain approximation from s-domain TF 
d2c discrete to continuous s-domain approximation from z-domain TF 
d2d discrete to discrete Sampling-rate change within z-domain 
 

The general model of a second-order system is 
2
00

2

2
00

2
0

,2 21'2' 








sDs

A

Dss

A
STF general  

with s'=s/0. To observe the impact of DC amplification A0, cutoff frequency 0 and stability 
parameter D we observe the system for different cases of D (you’d better write it into a file): 
 
A0 = 10;           % DC amplification 
w0 = 1000;         % cutoff frequency in rad 
D_osc=0.1;         % oscillating case 
D_pm45=0.5;        % 45° phase-margin case 
D_bw = sqrt(2);    % Butterworth case 
D_dblim=1;         % dead-beat (aperiodic) limit case 
D_creep=10;        % creep case 
 
% compute Laplace-domain transfer functions 
Hs_osc = tf([A0*w0^2], [1 2*D_osc*w0 w0^2]); 
Hs_pm45 = tf([A0*w0^2], [1 2*D_pm45*w0 w0^2]); 
Hs_bw = tf([A0*w0^2], [1 2*D_bw*w0 w0^2]); 
Hs_dblim = tf([A0*w0^2], [1 2*D_dblim*w0 w0^2]); 
Hs_creep = tf([A0*w0^2], [1 2*D_creep*w0 w0^2]); 
% display Laplace-domain transfer functions 
bode(Hs_osc,Hs_pm45,Hs_bw,Hs_dblim,Hs_creep); 

 
c2d: Translate the transfer functions (TF) above into the time-discrete domain. (We’ll now 
get several graphics windows over each other.): 
 
% compute and display Laplace- and z-domain transfer functions 
% "figure(x)" clears / creates plot sheet x 
Hz_osc   = c2d(Hs_osc,1e-4);   figure(2); bode(Hs_osc,Hz_osc); 
Hz_pm45  = c2d(Hs_pm45,1e-4);  figure(3); bode(Hs_pm45,Hz_pm45); 
Hz_bw    = c2d(Hs_bw,1e-4);    figure(4); bode(Hs_bw,Hz_bw); 
Hz_dblim = c2d(Hs_bw,1e-4);    figure(6); bode(Hs_dblim,Hz_dblim); 
% "figure" creates a new plot sheet with the next free number ("handle") 
Hz_creep     = c2d(Hs_creep,1e-4); figure   ; bode(Hs_creep,Hz_creep); 
figure(6), step(Hs_osc,Hz_osc); figure(7), impulse(Hs_osc,Hz_osc); 

 
 
d2c: Translate Hz_osc back from z- to s-domain: 
% Translate Hz_osc back from z- to s-domain: 
Hs_osc_back = d2c(Hz_osc), figure(8), bode(Hz_osc,Hs_osc_back); 

 
 
d2d: Change sampling rate. The numerator (deutsch: Zähler) must not contain real numbers. 
Example for a digital integrator model: 
 
% increase sampling rate x 10 using d2d: (no real numbers in numerator!) 
Hz_int1 = tf([1 0],[1 -1],1e-1), figure(9), bode(Hz_int1) % dig. integrator 
Hz_int2 = d2d(Hz_int1,1e-2),     figure(10), bode(Hz_int1,Hz_int2) 



M. Schubert Lab2: LTI System Modeling Using Matlab M. Schubert 

 - 17 -

 

6 Self-Made Bode Diagram 
This part is for particularly interested students only. There is no need to work it through or 
understand it. 
 
The Bode command demonstrated above is powerful but the user might prefer the frequency 
axis in Hz rather than in rad and may want to label and rescale the axis. For this purpose, a 
selfmade Bode diagram will be presented in this section. 
 
Assuming a time-domain model without feedback in the form  
 
yn = a1 xn-1 + a2 xn-2 + a3 xn-3 + … + ac-2 xn-(c-2) + an-1 xn-(c-1) ac xn-c  
 
It has the z-domain transfer function 
 
H(z) = a1z-1 + a2z-2 +   a3z-3 +  … ac-2z-c+2 +   + ac-1z-c+1 +   acz-c  
 
In the Matlab model below the impulse response of the model to be investigated is defined by 
hn. In the example below it is a moving averager computing the average of the last 50 input 
samples. 
 
 
% function y=f_wv(hn);          % function version 
 
% hn: time-domain impulse response: moving averager 
hn=ones(1,50); hn=hn/sum(hn);   % comment this line for other versions 
 
% hn: time-domain impulse response: comb-filter with alpha=1 
hn=zeros(1,50); hn(1)=1; hn(50)=1;   % comment this line for other versions 
 
% hn: time-domain impulse response: lowpass 
Order=50; Fg=0.05; tau=-Order/2:Order/2;     % comment this line if necess. 
hn=sinc(2*Fg*tau); hn=hn.*blackman(Order+1)'; hn=hn/sum(hn); % comment if n 
 
cTaps=length(hn); 
Fstep=0.0001; 
Fmax=0.5; 
F=0:Fstep:Fmax; 
Hz=zeros(1,length(F)); 
zn=exp(-i*2*pi*F); % = 1/z 
for j=1:length(hn); 
  Hz=Hz+hn(j)*(zn.^j); 
end; 
subplot(411); stem(hn); axis([-5,55,min(hn),max(hn)*1.1])  
grid on; ylabel('imp. resp. h(i)'); % xlabel('linear n'); 
subplot(412); semilogx(F,abs(Hz)); 
     axis([0,Fmax,min(abs(Hz)),max(abs(Hz))*1.1]) 
grid on; ylabel('linear H(z)'); % xlabel('log F '); 
subplot(413); semilogx(F,20*log10(abs(Hz))); axis([0,Fmax,-100,10]) 
grid on; ylabel('dB(H(z))'); % xlabel('log F '); 
subplot(414); semilogx(F,angle(Hz)); 
grid on; ylabel('angle(H(z))'); % xlabel('log F '); 
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Some more Matlab commands used above:  
 exp(x) : = ex. 
 subplot(x,y,z) or Subplot(xyz) activates field z after dividing the plot sheet into 

x columns and y rows. 
 grid on, grid off: switches a axis-oriented grid on in the plot field 
 semilogx(…), semology(…): like plot, but with lagarithmic x-/y-axis 
 title(…) : write a title over the plot 
 xlabel(…), ylabel(…) : writes a label to x-/y-axis 
 axis([xmin,xmax,ymin,ymax]) : user defined axis ranges 
 
 

7 Conclusion 
Assuming Laplace transform to be known the coherence of s and z was details. Some 
fundamental Matlab commands were introduced for beginners. Matlab LTI models were 
introduced. A proposal for something like a selfmade Bode diagram was proposed for 
interested, advanced students. 
 

8 References 
[1] Available: http://www.mathworks.com/, http://www.mathworks.de/. 
[2] M. Schubert, "Zusammenfassung von Matlab-Anweisungen", Available: 

http://homepages.hs-regensburg.de/~scm39115/homepage/education/education.htm. 
[3] A. Angermann, M. Beuschel, M. Rau, U. Wohlfarth: „Matlab – Simulink – Stateflow, 

Grundlagen, Toolboxen, Beispiele“, Oldenbourg Verlag, ISBN 3-486-57719-0, 
4. Auflage (für Matlab Version 7.0.1, Release 14 mit Service Pack 1). URL: 
http://www.matlabbuch.de/ 

[4] Available: http://www.scilab.org/. 
[5] Available: http://www.octave.org. 
[6] Available http://www.gnu.org/software/octave/. 
[7] Windows installer, available: http://octave.sourceforge.net/. 
[8] Official gnuplot documentation. Avail.: http://www.gnuplot.info/documentation.html. 
[9] Available: http://www.jhandles.net/. 
 

9 Appendix A 
Claim: When   F{x(t)}  = X(j)   with  F{}  being the Fourier Transformation,  
 Then   F{x(t-T)} = X(j)  z-1  with  z = e jT. 
 
Proof: 

Fourier is defined as:   dtetxtxFjX
t

tj




  )()}({)(  

 
Using the substitution   t'=t-T      t=t'+T      dt=dt'   delivers  
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