Ostbayerische Technische Hochschule Regensburg

Studiengang Elektro- und Informationstechnik						
Prüfungsfach:	Analoge Schaltungstechnik (SC), SoSe 2023					
Prüfungstermin:	11. Jul. 2023	Studiengrupp	oe: EI4			
Prüfungsdauer:	90min (planmäßig:	11-12:30h),	Räume S051/52, Platz:			
Zugelassene Hilfsmittel:	CASIO fx-991 Version DE X oder älter 10 S. DIN-A4 eigenhandschriftlich					
Aufgabensteller:	Prüfungsteil Prof. I	Dr. Martin Sch	ubert			
Prüfungsteilnehmer/in:	(Bitte leserlich in D	ruckbuchstabe	en) Sem.:			
Name:						
Vorname:			MatNr:			

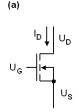
Zusätzliche Blätter können nur dann gewertet werden, wenn Sie durch Angabe der Prüfung, des Namens, des Datums und der bearbeiteten Aufgabe **eindeutig zuzuordnen** sind!

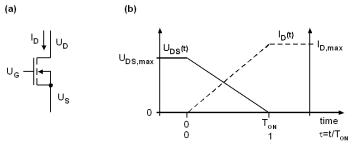
Maximal erreichbare Punktzahl: 100 Punkte

Runden Sie Zahlenwerte typischerweise auf drei Dezimalstellen oder auf so viele, wie offensichtlich notwendig sind (z.B. x=0,9997, wenn das Ergebnis x<1 sein muss).

>>>> Rot ist Korrekturfarbe, bitte keinen Rotstift verwenden!

Weitere Hinweise:


- 1. Die Aufgaben sind so aufgebaut, dass Folgefehler nach Möglichkeit vermieden werden. Nach "Rechnen Sie weiter mit..." ist unbedingt mit dem gegebenen Wert weiterzurechnen.
- 2. Kalkuliert wurde ein Zeitbedarf von ca. einem Punkt pro Minute. Verwenden Sie nicht zu viel Zeit für Aufgaben, die nur wenige Punkte bringen.


Punkte:	Note:	Datum:	Prüfer:	Prof. Dr. M. Schubert

1 Grundlagen Schalten und Energieverbrauch

Fig. 1:

- (a) FET als Schalter
- **(b)** Angenommener Verlauf von I_D und U_{DS} .

Gegeben sei für den MOSFET in Bildteil (a) Spannungs- und Stromverlauf gemäß Bildteil (b). Mit $\tau = t / T_{ON}$ ergibt sei

$$I_D = \begin{cases} 0 & \textit{f\"{u}r} & \tau \leq 0 \\ I_{D,\max} \cdot \tau & \textit{f\'{u}r} & 0 \leq \tau \leq 1 \\ I_{D,\max} & \textit{f\'{u}r} & \tau \geq 1 \end{cases}$$

$$I_D = \begin{cases} 0 & \textit{f\"{u}r} & \tau \leq 0 \\ I_{D,\max} \cdot \tau & \textit{f\'{u}r} & 0 \leq \tau \leq 1 \\ I_{D,\max} & \textit{f\'{u}r} & \tau \geq 1 \end{cases} \qquad \text{und} \qquad U_{DS} = \begin{cases} U_{DS,\max} & \textit{f\'{u}r} & \tau \leq 0 \\ U_{DS,\max} \cdot (1-\tau) & \textit{f\'{u}r} & 0 \leq \tau \leq 1 \\ 0 & \textit{f\'{u}r} & \tau \geq 1 \end{cases}$$

(a) Welche Formel beschreibt die Leistung, welche den MOSFET erwärmt als Funktion der Zeit für $\tau < 0$, $0 \le \tau \le 1$, $\tau > 1$? Verwenden Sie $P_{\rm m} = U_{DS.{\rm max}} \cdot I_{D.{\rm max}}$. (4P)

(b) Zu welchem Zeitpunkt t_p erreicht diese Leistung ihr Maximum P_{peak} ? Herleitung! (3P)

(c) Wie groß ist das Leistungsmaximum P_{peak} als Funktion von P_m ? Herleitung! (2P)

(d) Wie groß ist die für den Schaltvorgang aufgewendete Energie E_{SW} als	Funktion von T_{ON} ?
	(5P)
	• • • • • • • • • • • • • • • • • • • •

(e) Welche Abhängigkeit ergibt sich für E_{SW} von der Schaltzeit T_{ON} ? (1P)