Direction dependent wind speed measuring probes for low speeds

Christian Lackinger

Mechanical Engineering, Galgenbergstr. 30, D-93053 Regensburg - Germany, Head: Prof. Dr.-Ing. Stephan Lämmlein
http://www.fh-regensburg.de

Introduction

The determination of the flow velocity vector (amount and direction) becomes more and more important in the modern flow measuring technology, particularly in aviation, in automotive industry, but also, e.g., in meteorology.
\longrightarrow Use of direction dependent wind speed probes:

- Pressure measuring probes (5-hole probe)
- Hot-wire probes (CTA)
- Laser-Doppler-Anemometry (LDA)

The determination of the flow velocity vector with the 5 -hole probe used here is possible only with a previous calibration of the probe. Because this must occur 3-dimensional, this is connected with a considerable adjustmentand analysis-work.
During calibration and data acquisition with the PC, communication of different control devices and measuring instruments has to be performed. So that the acquired measuring data can be assigned for the adjusted positions, it is an advantage if all data are written in one measuring file.

Focus of Investigation

- Calibration of the 5-hole-probe available at the lab wind tunnel/flow measurements

Realization

- Calibration of the 5 -hole probe with the introduced procedure of K . Wörrlein (TU Darmstadt), which makes a up to now required zero comparison at every single measurement unnecessary
- Setting of the required angles α_{T} and β_{T} with the help of the anglepositioning device, designed by G. Schmitz

Conclusions

- Determination of the coefficient matrix K (20×4 - matrix) with the help of the
- flow dimensions:

$$
\text { - blade angle } \alpha_{\mathrm{T}} \quad \text { • rotation angle } \beta_{\mathrm{T}}
$$

total pressure $p_{t}=p_{g e s} \quad \cdot$ static pressure $p_{\text {stat }}$ pressure in the probe drillings p_{1} to p_{5}

- influencing variables: $C_{\alpha_{\mathrm{T}}}=\frac{\mathrm{p}_{1}-\mathrm{p}_{3}}{\mathrm{p}_{5}-\overline{\mathrm{p}}}, C_{\beta_{\mathrm{T}}}=\frac{\mathrm{p}_{2}-\mathrm{p}_{4}}{\mathrm{p}_{5}-\overline{\mathrm{p}}}$ and

