Genaue Kenntnis der Fließspannung ist Voraussetzung für die Simulation von Präzisionsumformverfahren

ECKART DOEGER, JENS ARENDT FRDE und ROLAND SEIDEL

Für die Auslegung von Umformprozessen werden zunehmend rechnergestützte Simulations- und Berechnungsverfahren angewendet. Die wichtigste Grundlage für die Anwendung der Programme ist die Kenntnis der Material- und Prozeßkenngrößen.

Endkonturnahe Umformverfahren stellen dabei wegen der ständig wechselnden, inhomogenen Verteilung von Formänderungen und Temperaturen im Werkstück hohe Anforderungen an die Qualität der Werkstoffdaten.

Metallische Werkstoffe lassen sich durch Aufbringen eines definierten Spannungszustands plastisch verformen. Um den Umformvorgang einzuhalten und aufrechtzuerhalten, wird eine bestimmte mechanische Spannung benötigt, die bei einem einachsigen Spannungszustand als Fließspannung \(k \) bezeichnet wird. Die Fließspannung \(k \) ist abhängig von Werkstoff, Umformgrad \(\varphi \), Umformtemperatur \(T \) und Umformgeschwindigkeit \(v \) [1]. Bild 1 zeigt die Fließkurve für den Stahl C45 als Beispiel für drei ausgewählte Temperaturen der Kalt-, Halbwarm- und Warmumformung in der üblichen Darstellung.

Wegen der Bedeutung der Fließspannung sind zu ihrem Bestimmen eine Vielzahl von Verfahren eingesetzt worden. Alle diese Verfahren zeugen eine starke Abhängigkeit der Fließkurven von werkstoff-, verfahrens- und prüfbedingten Einflußgrößen. Grundsätzlich sollte das Prüfverfahren daher so gewählt werden, daß die besonderen Verhältnisse des jeweiligen Umformvorgangs berücksichtigt werden, das heißt, das Prüfverfahren sollte dem tatsächlichen Umformvorgang möglichst nahekommen [3].

Prinzipiell vorzuzeiten sind Umformvorgänge mit einachsigen Spannungszustand und einer homogenen Formänderung, weil die
Fließspannung ohne Anwendung einer Fließhypothese bestimmt werden kann. Für den Bereich der Massivumformung ist der einachsige Zylinderstauchversuch diejenige Prüfvariante, die den realen Umformprozeß am nächsten kommt. Eine weitgehend homogene Formänderung läßt sich dabei mit entsprechender Schmierung bis zu Umformgraden von $\varphi = 0.8$ erreichen.

Beim Kaltumformen ist der Einfluß der Umformgeschwindigkeit auf die Fließspannung relativ klein. Beim Warmumformen ist er wegen der zeitgleich mit der Umformung werkstoff- und temperaturabhängig ablauferen Rekristallisationsvorgänge unterschiedlich groß. Um den Einfluß der Umformgeschwindigkeit auf die Fließspannung genau zu erfassen, ist es daher notwendig, die Umformgeschwindigkeit während der Versuchsduer konstant zu halten. Neben entsprechend gesteuerten hydraulischen Prüfmaschinen, welche für niedrigere Umformgeschwindigkeiten geeignet sind, ist dies mit speziellen Nockengetriebenen Pressen (Plastometern) möglich. Wenn die Umformgeschwindigkeit konstant bleibt, ist ein Antrieb notwendig, der den Stoßel mit einer Geschwindigkeit v bewegt, die mit der Höhe abnimmt und folgendem Gesetz genügt:

$$\varphi = \frac{v}{h} = \text{konstant}$$

Die dafür erforderliche Kurve bildet eine logarithmische Spirale. Ein nach dieser Kurve geformter Nocken beschleunigt den Schlitzen aus der Ruhe sehr rasch auf die erforderliche Geschwindigkeit. In Bild 2 wird das entsprechende Prinzip der Fließkurvenaufnahme gezeigt. Mit der am IFUM vorhandenen Prüfmaschine (Plastometer) lassen sich prinzipiell Umformgeschwindigkeiten von φ gleich 0.25 bis 100 s^{-1} realisieren.

Der absolute Wert der Umformgeschwindigkeit kann durch den Auftreffgeschwindigkeit und die Anfangshöhe beeinflußt werden. Da der Antrieb durch eine Kurvenscheibe erfolgt, ist der Umformweg Δh und bei einer bestimmten Anfangshöhe h_0 der Umformgrad festgelegt. Für die vorgegebene Kurvenscheibe sollte die Auftreffgeschwindigkeit v_0 derart in möglichst weiten Grenzen zu verändern sein. Gewählt wurden Geschwindigkeitsgrenzen von 6 und 2400 mm/s, mit einer Probenanfangshöhe von 24 mm erhält man auf diese Weise Umformgeschwindigkeiten von 0.25 bis 100 s^{-1}.

Die Maschine wurde so ausgelegt, daß auch bei der kleinsten Stoßelgeschwindigkeit noch die erforderliche Energie aus dem Schwingungsniveau entnommen werden kann. Eine Erweiterung der Umformgeschwindigkeitsgrenze nach unten auf 0.001 s^{-1} wurde mit einem hydraulischen Motor realisiert. Das dabei nötige Drehmoment zum Stauchen wird vom Hydromotor ohne nennenswerte Abweichungen in der Drehzahl während des Prüfzugs gewährleistet.

Die Maschine wurde für eine Prüfkraft von 5000 kN ausgelegt. Diese Kraft erlaubt es, Stahlproben mit 16 mm Durchmesser bei einem Umformwiderstand von 1250 N/mm^2 auf halbe Höhe zu stauchen.

Zylindrische Werkstoffproben kommen in Stauchvorrichtung

Bei Temperaturen bis zu 700 °C werden die zylindrischen Werkstoffproben in einer Stauchvorrichtung gestaucht, die aus einem Schutzhülle, der bei erhöhten Temperaturen als Wärmeschutzhülle dient, und zwei Staubbahnen besteht. Bei Versuchen überhalb Raumtemperatur werden die Stauchproben im Wärmeschutzhüller zusammen mit den Staubbahnen in einem Luftumwälzofen auf die Prüftemperatur aufgeheizt und anschließend im Plastometer gestaucht.

Ein einwandfreie Ermittlung der Fließspannung in einem Stauchversuch ist nur dann gewährleistet, wenn die getroffenen Annahmen hierfür (einschließlich Spannungszustand) eingehalten werden. Eine gute Schmierung der Wirkflächen ermöglicht eine weitgehende Annäherung an diesen Spannungszustand. Bei den Stauchversuchen werden daher den jeweiligen Prüftemperaturen angepaßte Schnersöhle verwendet.

Bei Raumtemperatur und bei 200 °C eignen sich Teflonfolien mit einerDicke von 0.1 bis 0.2 mm am besten, um die Reibung gering zu halten. Für Stauchversuche bei 400 °C werden 0.1 bis 0.2 mm dicke Zinkfolien verwendet. Bei Prüftemperaturen über 600 °C werden Methanol aufgescho wemmte Glaspulver auf die Staubbahnen aufgetragen. Die Zusammensetzung der Glaspul-
PC-PROGRAMM

Fließkurven-Informationssystem

![Diagramm der Fließkurvenschar in Abhängigkeit von Umformgrad und Probentemperatur bei konstanter Umformgeschwindigkeit.]

PC-FIS bietet dabei die Möglichkeit, auf vier verschiedene Arten die Fließspannungsverläufe darzustellen. Bei vorgegebener Umformgeschwindigkeit bestehen folgende Möglichkeiten:

1. Fließspannung als Temperaturkurven in Abhängigkeit vom Umformgrad \(k_1(\phi)\).
2. Fließspannung als Kurven konstanter Umformgrade in Abhängigkeit von der Temperatur \(k_2(T_0)\).
3. Fließspannung in Abhängigkeit von Temperatur und Umformgrad \(k_3(T_0, \phi)\).
4. Fließspannung in Abhängigkeit von Umformgrad und -temperatur \(k_4(\phi, T_0)\) (Bild).

Der Fließspannungsverlauf wird so gewählt, daß sie bei je-weiliger Prüftemperatur einen teigigen Zustand besitzen und somit eine gute Schmierung bewirken.

Die Kraftmessung geschieht mittels im Einbau hergestellter Kraftmesskörper, die zugleich als Pressenstempel verwendet werden. Eine Beeinflussung der Kraftmessung durch Trägheitskräfte ist im untersuchten Geschwindigkeitsbereich nicht zu erwarten, da sie erst bei sehr hohen Geschwindigkeiten auftreten. Für die Wegmessung wird ein induktiver Weggeber verwendet, der im Plastimeter so angebracht wird, daß keiner der federnden Maschinenteile die Messung verfälschen.

Die Aufnahme der Meßwerte (Kraft \(F\) und Weg \(s\)) geschieht wie folgt: Während des Stauchvorganges werden die Meßsignale von dem DMS-bestückten Kraftmesskörper und dem induktiven Weggeber über den Meßverstärker und einen A/D-Wandler in einen PC transferiert. Die Meßdaten stehen als Datei für die weitere Bearbeitung zur Verfügung, beispielsweise im Fließkurven-Informationssystem PC-FIS (siehe Kastentext).

Literatur